14 research outputs found

    Tracer Survey in the Cape Verde Region Traceraufnahme in der Kapverdenregion Cruise No. 10, Leg 1 October 31 – December 06, 2008 Ponta Delgada (Portugal) – Mindelo (Cape Verde Islands)

    Get PDF
    The research cruise MSM10/1 was extremely successful. All programs were able to collect high quality data and the anticipated goals of the expedition were fully met. We have been able to carry out the first comprehensive survey of a tracer release in the Guinea Upwelling region (GUTRE) roughly seven month after the tracer was released at 8°N 23°W in April 2008. We have estimated that a total of 40% of the tracer was found during this cruise. While the horizontal spreading and mixing was larger than anticipated, the vertical extent of the tracer found was small. The low vertical tracer spreading rate estimates are supported by the micro structure profile data. The extensive survey of the upper 1000m of the oxygen minimum zone (OMZ) allowed comparing our sections with several previous surveys. We found that the lowest oxygen values in the core of the OMZ have dropped at record low values below 40 μmol/kg. The preliminary findings from the trace metal work focused on Fe ligand measurements shows a slight higher excess ligand concentration in the surface (50m) for three stations. The two other stations show a slight decrease at this depth. A large number of biochemical samples were taken and were analyzed in Kiel for DNA and RNA diversity. The tracer release experiment provided an ideal environment for repeated biochemical sampling in the same water mass

    Circulation and Oxygen Distribution in the Tropical Atlantic Cruise No. 80, Leg 1; October 26 to November 23, 2009 Mindelo (Cape Verde) to Mindelo (Cape Verde)

    Get PDF
    METEOR cruise 80/1 was a contribution to the SFB 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean”. Shipboard, glider and moored observations are used to study the temporal and spatial variability of physical and biogeochemical parameters within the oxygen minimum zone (OMZ) of the tropical North Atlantic. As part of the BMBF “Nordatlantik” project, it further focuses on the equatorial current system including the Equatorial Undercurrent (EUC) and intermediate currents below. During the cruise, hydrographic station observations were performed using a CTD/O2 rosette, including water sampling for salinity, oxygen, nutrients and other biogeochemical tracers. Underway current measurements were successfully carried out with the 75 kHz ADCP borrowed from R/V POSEIDON during the first part of the cruise, and R/V METEOR’s 38 kHz ADCP during the second part. During M80/1, an intensive mooring program was carried out with 8 mooring recoveries and 8 mooring deployments. Right at the beginning of the cruise, a multidisciplinary mooring near the Cape Verde Islands was recovered and redeployed. Within the framework of SFB 754, two moorings with CTD/O2 profilers were recovered and redeployed with other instrumentation in the center and at the southern rim of the OMZ of the tropical North Atlantic. The equatorial mooring array as part of BMBF “North Atlantic” project consists of 5 current meter moorings along 23°W between 2°S and 2°N. It is aimed at quantifying the variability of the thermocline water supply toward the equatorial cold tongue which develops east of 10°W during boreal summer. Several glider missions were performed during the cruise. One glider was recovered that was deployed two months earlier. Another glider was deployed for two short term missions, near the equator for about 8 days and near 8°N for one day. This glider was equipped with a new microstructure probe in addition to standard sensors, i.e. CTD/O2, chlorophyll and turbidity

    Effects of elevated seawater pCO2 on gene expression patterns in the gills of the green crab, Carcinus maenas

    Get PDF
    Background: The green crab Carcinus maenas is known for its high acclimation potential to varying environmental abiotic conditions. A high ability for ion and acid-base regulation is mainly based on an efficient regulation apparatus located in gill epithelia. However, at present it is neither known which ion transport proteins play a key role in the acid-base compensation response nor how gill epithelia respond to elevated seawater pCO2 as predicted for the future. In order to promote our understanding of the responses of green crab acid-base regulatory epithelia to high pCO2, Baltic Sea green crabs were exposed to a pCO2 of 400 Pa. Gills were screened for differentially expressed gene transcripts using a 4,462-feature microarray and quantitative real-time PCR. Results: Crabs responded mainly through fine scale adjustment of gene expression to elevated pCO2. However, 2% of all investigated transcripts were significantly regulated 1.3 to 2.2-fold upon one-week exposure to CO2 stress. Most of the genes known to code for proteins involved in osmo- and acid-base regulation, as well as cellular stress response, were were not impacted by elevated pCO2. However, after one week of exposure, significant changes were detected in a calcium-activated chloride channel, a hyperpolarization activated nucleotide-gated potassium channel, a tetraspanin, and an integrin. Furthermore, a putative syntaxin-binding protein, a protein of the transmembrane 9 superfamily, and a Cl-/HCO3 - exchanger of the SLC 4 family were differentially regulated. These genes were also affected in a previously published hypoosmotic acclimation response study. Conclusions: The moderate, but specific response of C. maenas gill gene expression indicates that (1) seawater acidification does not act as a strong stressor on the cellular level in gill epithelia; (2) the response to hypercapnia is to some degree comparable to a hypoosmotic acclimation response; (3) the specialization of each of the posterior gill arches might go beyond what has been demonstrated up to date; and (4) a re-configuration of gill epithelia might occur in response to hypercapnia

    Chemical kinetics in an atmospheric pressure helium plasma containing humidity

    Get PDF
    Atmospheric pressure plasmas are sources of biologically active oxygen and nitrogen species, which makes them potentially suitable for the use as biomedical devices. Here, experiments and simulations are combined to investigate the formation of the key reactive oxygen species, atomic oxygen (O) and hydroxyl radicals (OH), in a radio-frequency driven atmospheric pressure plasma jet operated in humidified helium. Vacuum ultra-violet high-resolution Fourier-transform absorption spectroscopy and ultra-violet broad-band absorption spectroscopy are used to measure absolute densities of O and OH. These densities increase with increasing H 2 O content in the feed gas, and approach saturation values at higher admixtures on the order of 3 × 10 14 cm −3 for OH and 3 × 10 13 cm −3 for O. Experimental results are used to benchmark densities obtained from zero-dimensional plasma chemical kinetics simulations, which reveal the dominant formation pathways. At low humidity content, O is formed from OH + by proton transfer to H 2 O, which also initiates the formation of large cluster ions. At higher humidity content, O is created by reactions between OH radicals, and lost by recombination with OH. OH is produced mainly from H 2 O + by proton transfer to H 2 O and by electron impact dissociation of H 2 O. It is lost by reactions with other OH molecules to form either H 2 O + O or H 2 O 2 . Formation pathways change as a function of humidity content and position in the plasma channel. The understanding of the chemical kinetics of O and OH gained in this work will help in the development of plasma tailoring strategies to optimise their densities in applications

    Mechanisms of acid-base regulation in seawater-acclimated green crabs, Carcinus maenas

    No full text
    The present study investigated acid-base regulatory mechanisms in seawater-acclimated green crabs (Carcinus maenas (L., 1758)). In full-strength seawater, green crabs are osmoconformers so that the majority of the observed responses were attributed to ion-fluxes based on acid-base compensatory responses alone. Similar to observations in brackish-water acclimated C. maenas, seawater-acclimated green crabs exposed to hypercapnia rapidly accumulated HCO3The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Differential acid-base regulation in various gills of the green crab Carcinus maenas: Effects of elevated environmental pCO2

    No full text
    Euryhaline decapod crustaceans possess an efficient regulation apparatus located in the gill epithelia, providing a high adaptation potential to varying environmental abiotic conditions. Even though many studies focussed on the osmoregulatory capacity of the gills, acid-base regulatory mechanisms have obtained much less attention. In the present study, underlying principles and effects of elevated pCO2 on acid-base regulatory patterns were investigated in the green crab Carcinus maenas acclimated to diluted seawater. In gill perfusion experiments, all investigated gills 4-9 were observed to up-regulate the pH of the hemolymph by 0.1-0.2 units. Anterior gills, especially gill 4, were identified to be most efficient in the equivalent proton excretion rate. Ammonia excretion rates mirrored this pattern among gills, indicating a linkage between both processes. In specimen exposed to elevated pCO2 levels for at least 7 days, mimicking a future ocean scenario as predicted until the year 2300, hemolymph K+ and ammonia concentrations were significantly elevated, and an increased ammonia excretion rate was observed. A detailed quantitative gene expression analysis revealed that upon elevated pCO2 exposure, mRNA levels of transcripts hypothesized to be involved in ammonia and acid-base regulation (Rhesus-like protein, membrane-bound carbonic anhydrase, Na+/K+-ATPase) were affected predominantly in the non-osmoregulating anterior gills

    Acid-base regulation in the Dungeness crab (Metacarcinus magister)

    No full text
    Homeostatic regulation allows organisms to secure basic physiological processes in a varying environment. To counteract fluctuations in ambient carbonate system speciation due to elevated seawater pCO2 (hypercapnia), many aquatic crustaceans excrete/accumulate acid-base equivalents through their gills; however, not much is known about the role of ammonia in this response. The present study investigated the effects of hypercapnia on acid-base and ammonia regulation in the Dungeness crab, Metacarcinus magister on the whole animal and isolated gill levels. Hemolymph pCO2 and [HCO3]- increased in M. magister acclimated to elevated pCO2 (330 Pa), while pH remained stable. Additionally, hemolymph [Na+], [Ca2+], and [SO4]2- were significantly increased. When challenged with varying pH during gill perfusion, the pH of the artificial hemolymph remained relatively unchanged. Overall, ammonia production and excretion, as well as oxygen consumption, were reduced in crabs acclimated to elevated pCO2, demonstrating that either (amino acid) oxidation is reduced in response to this particular stress, or nitrogenous wastes are excreted in an alternative form
    corecore