107 research outputs found

    Analytical Approximations for the Collapse of an Empty Spherical Bubble

    Full text link
    The Rayleigh equation 3/2 R'+RR"+p/rho=0 with initial conditions R(0)=Rmax, R'(0)=0 models the collapse of an empty spherical bubble of radius R(T) in an ideal, infinite liquid with far-field pressure p and density rho. The solution for r=R/Rmax as a function of time t=T/Tcollapse, where R(Tcollapse)=0, is independent of Rmax, p, and rho. While no closed-form expression for r(t) is known we find that s(t)=(1-t^2)^(2/5) approximates r(t) with an error below 1%. A systematic development in orders of t^2 further yields the 0.001%-approximation r*(t)=s(t)[1-a Li(2.21,t^2)], where a=-0.01832099 is a constant and Li is the polylogarithm. The usefulness of these approximations is demonstrated by comparison to high-precision cavitation data obtained in microgravity.Comment: 5 pages, 2 figure

    Spatial discretization issues for the energy conservation in compressible flow problems on moving grids

    No full text
    The prediction of interaction phenomena between a compressible flow in a moving domain and other models like structural ones requires that some conservation properties need to be satisfied by the numerical schemes. In this paper we investigate the important problem of the work-energy conservation within the fluid for the discrete formulation on moving grids. In the case of a compressible flow, the work performed on the fluid by the moving interface has to be properly translated in a variation of the total fluid energy. We present a numerical model that satisfies this energy conservation property without loosing some other conservation properties such as the Geometric Conservation Law

    Spatial discretization issues for the energy conservation in compressible flow problems on moving grids

    Get PDF
    The prediction of interaction phenomena between a compressible flow in a moving domain and other models like structural ones requires that some conservation properties need to be satisfied by the numerical schemes. In this paper we investigate the important problem of the work-energy conservation within the fluid for the discrete formulation on moving grids. In the case of a compressible flow, the work performed on the fluid by the moving interface has to be properly translated in a variation of the total fluid energy. We present a numerical model that satisfies this energy conservation property without loosing some other conservation properties such as the Geometric Conservation Law

    Illusions and Cloaks for Surface Waves

    Get PDF
    Open access articleEver since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks.Engineering and Physical Sciences Research Council (EPSRC

    The Stimulatory Gαs Protein Is Involved in Olfactory Signal Transduction in Drosophila

    Get PDF
    Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology, constituting a key difference between the olfactory systems of insects and other animals. While heteromeric insect ORs form ligand-activated non-selective cation channels in recombinant expression systems, the evidence for an involvement of cyclic nucleotides and G-proteins in odor reception is inconsistent. We addressed this question in vivo by analyzing the role of G-proteins in olfactory signaling using electrophysiological recordings. We found that Gαs plays a crucial role for odorant induced signal transduction in OR83b expressing olfactory sensory neurons, but not in neurons expressing CO2 responsive proteins GR21a/GR63a. Moreover, signaling of Drosophila ORs involved Gαs also in a heterologous expression system. In agreement with these observations was the finding that elevated levels of cAMP result in increased firing rates, demonstrating the existence of a cAMP dependent excitatory signaling pathway in the sensory neurons. Together, we provide evidence that Gαs plays a role in the OR mediated signaling cascade in Drosophila

    The Founder’s Lecture 2009: advances in imaging of osteoporosis and osteoarthritis

    Get PDF
    The objective of this review article is to provide an update on new developments in imaging of osteoporosis and osteoarthritis over the past three decades. A literature review is presented that summarizes the highlights in the development of bone mineral density measurements, bone structure imaging, and vertebral fracture assessment in osteoporosis as well as MR-based semiquantitative assessment of osteoarthritis and quantitative cartilage matrix imaging. This review focuses on techniques that have impacted patient management and therapeutic decision making or that potentially will affect patient care in the near future. Results of pertinent studies are presented and used for illustration. In summary, novel developments have significantly impacted imaging of osteoporosis and osteoarthritis over the past three decades

    Characterization of indeterminate spleen lesions in primary CT after blunt abdominal trauma: potential role of MR imaging

    Full text link
    The purpose of this study was to determine the value of magnetic resonance imaging (MRI) for characterization of indeterminate spleen lesions in primary computed tomography (CT) of patients with blunt abdominal trauma. Twenty-five consecutive patients (8 female, 17 male, mean age 51.6 ± 22.4 years) with an indeterminate spleen lesion diagnosed at CT after blunt abdominal trauma underwent MRI with T2- and T1-weighted images pre- and post-contrast material administration. MRI studies were reviewed by two radiologists. Age, gender, injury mechanism, injury severity score (ISS), management of patients, time interval between CT and MRI, and length of hospital stay were included into the analysis. Patient history, clinical history, imaging, and 2-month clinical outcome including review of medical records and telephone interviews served as reference standard. From the 25 indeterminate spleen lesions in CT, 11 (44 %) were traumatic; nine (36 %) were non-traumatic (pseudocysts, n = 5; hemangioma, n = 4) and five proven to represent artifacts in CT. The ISS (P  0.05). The MRI features ill-defined lesion borders, variable signal intensity on T1- and T2-weighted images depending on the age of the hematoma, focal contrast enhancement indicating traumatic pseudoaneurysm, perilesional contrast enhancement, and edema were most indicative for traumatic spleen lesions. As compared with CT (2/25), MRI (5/25) better depicted thin subcapsular hematomas as indicator of traumatic spleen injury. In conclusion, MRI shows value for characterizing indeterminate spleen lesions in primary CT after blunt abdominal trauma

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Histogenesis of human fetal liver from 12 weeks to 36 weeks of gestation

    Get PDF
    Background: Fetal human liver developmental morphology is very important for diagnosis of congenital anomalies. The development of human liver is an ongoing process which begins after fertilization and continues into post-natal life. Liver is one of the organs of gastrointestinal tract having both exocrine and endocrine functions and capable of regeneration. Not only adult liver, the fetal liver is also an important organ with Haemopoietic functions. Pediatric liver transplants accounting for 10-15% of all liver transplants worldwide occur due to congenital defects.Methods: The study is conducted on 50 livers procured from 50 aborted fetuses (34 males and 16 females) ranging from 12 to 36 weeks of gestation .After confirming their age through CRL they were grouped. Then processed to form sections and stained with hematoxylin and eosin and seen under light microscope.Results: Histogenesis and development of human liver in prenatal period was observed under the microscope at various gestational age groups which was confirmed with lobular pattern, portal triad structures ,central vein and sinusoids showing fetal haemopoietic function which regress towards the term.Conclusions: The present study gave emphasis on all physical parameters and a detail histogenesis and development of human liver in prenatal period from 12 to 36 weeks of gestation. This work agreed with previous studies
    corecore