1,551 research outputs found
Velocity quantization approach of the one-dimensional dissipative harmonic oscillator
Given a constant of motion for the one-dimensional harmonic oscillator with
linear dissipation in the velocity, the problem to get the Hamiltonian for this
system is pointed out, and the quantization up to second order in the
perturbation approach is used to determine the modification on the eigenvalues
when dissipation is taken into consideration. This quantization is realized
using the constant of motion instead of the Hamiltonian.Comment: 10 pages, 2 figure
Is early center-based child care associated with tantrums and unmanageable behavior over time up to school entry?
Background. Existing research suggests that there is a relationship between greater exposure to center-based child care and child behavioral problems though the mechanism for the impact is unclear. However the measure used to document child care has usually been average hours, which may be particularly unreliable in the early months when fewer children are in center care. In addition individual trajectories for behavior difficulties have not been studied.
Objective. The purpose of the current study was to examine whether the extent of exposure to center-based child care before two years predicted the trajectory of children’s difficult behavior (i.e., tantrums and unmanageable behavior) from 30 to 51 months controlling for child and maternal characteristics.
Method. Data were drawn from UK-based Families, Children and Child Care (FCCC) study (n=1201). Individual growth models were fitted to test the relation between early center-based child care experiences and subsequent difficult behavior.
Results. Children with more exposure to center-based care before two had less difficult behavior at 30 months, but more increase over time. Initial levels were predicted by higher difficult temperament and lower verbal ability. Higher difficult temperament and lower family socio-economic status predicted its change over time.
Conclusion. Findings suggest that early exposure to center-based care before two years old is a risk factor for subsequent behavior problems especially when children have a longer period of exposure. A possible explanatory process is that child coping strategies to manage frustration are less well developed in a group context, especially when they lag behind in expressive language
The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths
We present the Planck Sky Model (PSM), a parametric model for the generation
of all-sky, few arcminute resolution maps of sky emission at submillimetre to
centimetre wavelengths, in both intensity and polarisation. Several options are
implemented to model the cosmic microwave background, Galactic diffuse emission
(synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II
regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic
Sunyaev-Zeldovich signals from clusters of galaxies. Each component is
simulated by means of educated interpolations/extrapolations of data sets
available at the time of the launch of the Planck mission, complemented by
state-of-the-art models of the emission. Distinctive features of the
simulations are: spatially varying spectral properties of synchrotron and dust;
different spectral parameters for each point source; modeling of the clustering
properties of extragalactic sources and of the power spectrum of fluctuations
in the cosmic infrared background. The PSM enables the production of random
realizations of the sky emission, constrained to match observational data
within their uncertainties, and is implemented in a software package that is
regularly updated with incoming information from observations. The model is
expected to serve as a useful tool for optimizing planned microwave and
sub-millimetre surveys and to test data processing and analysis pipelines. It
is, in particular, used for the development and validation of data analysis
pipelines within the planck collaboration. A version of the software that can
be used for simulating the observations for a variety of experiments is made
available on a dedicated website.Comment: 35 pages, 31 figure
A 2-D π–π dimer model system to investigate structure-charge transfer relationships in rubrene
© The Royal Society of Chemistry 2019Rubrene (5,6,11,12-tetraphenyltetracene) is undoubtedly one of the best performing organic charge transfer mediating materials, with experimentally determined mobilities up to 40 cm2 V−1 s−1. Consequently, there has been increasing interest by means of crystal engineering in trying to generate rubrene-based materials with analogous or even superior conducting properties. Often, experimental measurements are carried out in thin film architectures of these materials, where measured properties can be detrimentally impacted by device manufacture rather than intrinsic charge transfer properties of the material. The latter results in discarding potential good performers. To address these concerns, we report a two-dimensional model system that will allow researchers to predict charge transfer properties of their materials solely requiring the coordinates of the π–π stacking motifs. We envisaged this study to be of significant interest to the increasingly large community of materials scientists devoted to the realisation of improved organic charge mediating materials and particularly to those engaged in exploiting rubrene-based architectures.Peer reviewedFinal Accepted Versio
Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast
Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD
Evaluation of machine-learning methods for ligand-based virtual screening
Machine-learning methods can be used for virtual screening by analysing the structural characteristics of molecules of known (in)activity, and we here discuss the use of kernel discrimination and naive Bayesian classifier (NBC) methods for this purpose. We report a kernel method that allows the processing of molecules represented by binary, integer and real-valued descriptors, and show that it is little different in screening performance from a previously described kernel that had been developed specifically for the analysis of binary fingerprint representations of molecular structure. We then evaluate the performance of an NBC when the training-set contains only a very few active molecules. In such cases, a simpler approach based on group fusion would appear to provide superior screening performance, especially when structurally heterogeneous datasets are to be processed
Planck Intermediate Results. IV. The XMM-Newton validation programme for new Planck galaxy clusters
We present the final results from the XMM-Newton validation follow-up of new
Planck galaxy cluster candidates. We observed 15 new candidates, detected with
signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck
survey. The candidates were selected using ancillary data flags derived from
the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the
aim of pushing into the low SZ flux, high-z regime and testing RASS flags as
indicators of candidate reliability. 14 new clusters were detected by XMM,
including 2 double systems. Redshifts lie in the range 0.2 to 0.9, with 6
clusters at z>0.5. Estimated M500 range from 2.5 10^14 to 8 10^14 Msun. We
discuss our results in the context of the full XMM validation programme, in
which 51 new clusters have been detected. This includes 4 double and 2 triple
systems, some of which are chance projections on the sky of clusters at
different z. We find that association with a RASS-BSC source is a robust
indicator of the reliability of a candidate, whereas association with a FSC
source does not guarantee that the SZ candidate is a bona fide cluster.
Nevertheless, most Planck clusters appear in RASS maps, with a significance
greater than 2 sigma being a good indication that the candidate is a real
cluster. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 10^-4
arcmin^2, with indication for Malmquist bias in the YX-Y500 relation below this
level. The corresponding mass threshold depends on z. Systems with M500 > 5
10^14 Msun at z > 0.5 are easily detectable with Planck. The newly-detected
clusters follow the YX-Y500 relation derived from X-ray selected samples.
Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray
luminosity on average for their mass. There is no indication of departure from
standard self-similar evolution in the X-ray versus SZ scaling properties.
(abridged)Comment: accepted by A&
Planck Intermediate Results II: Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters
A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy
clusters as obtained by Planck and by the ground-based interferometer, the
Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric
Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure
profile, we jointly constrain the integrated Compton-Y parameter (Y_500) and
the scale radius (theta_500) of each cluster. Our resulting constraints in the
Y_500-theta_500 2D parameter space derived from the two instruments overlap
significantly for eight of the clusters, although, overall, there is a tendency
for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and
fainter than Planck. Significant discrepancies exist for the three remaining
clusters in the sample, namely A1413, A1914, and the newly-discovered Planck
cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the
Planck and AMI data is demonstrated through the use of detailed simulations,
which also discount confusion from residual point (radio) sources and from
diffuse astrophysical foregrounds as possible explanations for the
discrepancies found. For a subset of our cluster sample, we have investigated
the dependence of our results on the assumed pressure profile by repeating the
analysis adopting the best-fitting GNFW profile shape which best matches X-ray
observations. Adopting the best-fitting profile shape from the X-ray data does
not, in general, resolve the discrepancies found in this subset of five
clusters. Though based on a small sample, our results suggest that the adopted
GNFW model may not be sufficiently flexible to describe clusters universally.Comment: update to metadata author list onl
Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal
We examine the relation between the galaxy cluster mass M and
Sunyaev-Zeldovich (SZ) effect signal D_A^2 Y for a sample of 19 objects for
which weak lensing (WL) mass measurements obtained from Subaru Telescope data
are available in the literature. Hydrostatic X-ray masses are derived from
XMM-Newton archive data and the SZ effect signal is measured from Planck
all-sky survey data. We find an M_WL-D_A^2 Y relation that is consistent in
slope and normalisation with previous determinations using weak lensing masses;
however, there is a normalisation offset with respect to previous measures
based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect
measurements are in excellent agreement with previous determinations from
Planck data. For the present sample, the hydrostatic X-ray masses at R_500 are
on average ~ 20 per cent larger than the corresponding weak lensing masses, at
odds with expectations. We show that the mass discrepancy is driven by a
difference in mass concentration as measured by the two methods, and, for the
present sample, the mass discrepancy and difference in mass concentration is
especially large for disturbed systems. The mass discrepancy is also linked to
the offset in centres used by the X-ray and weak lensing analyses, which again
is most important in disturbed systems. We outline several approaches that are
needed to help achieve convergence in cluster mass measurement with X-ray and
weak lensing observations.Comment: 19 pages, 9 figures, matches accepted versio
- …
