10 research outputs found

    From/To: Dick Cupp (Chalk\u27s reply filed first)

    Get PDF

    From/To: Dick Cupp (Chalk\u27s reply filed first)

    Get PDF

    From/To: Dick Cupp (Chalk\u27s reply filed first)

    Get PDF

    From: Dick Cupp

    Get PDF

    NASA Glenn/AADC-Rolls Royce Collaborated to Measure Erosion Resistance on Coated Polymer Matrix Composites

    Get PDF
    Polymer matrix composites (PMCs) are increasingly used in aerospace and automotive applications because of their light weight and high strength-to-weight ratio relative to metals. However, a major drawback of PMCs is poor abrasion resistance, which restricts their use, especially at high temperatures. Simply applying a hard coating on PMCs to improve abrasion and erosion resistance is not effective since coating durability is short lived (ref. 1). Generally, PMCs have higher coefficients of thermal expansion than metallic or ceramic coatings have, and coating adhesion suffers because of poor interfacial adhesion strength. One technique commonly used to improve coating adhesion or durability is the use of bond coats that are interleaved between a coating and a substrate with vastly different coefficients of thermal expansion. An example of this remedy is the use of bondcoats for ceramic thermal barrier coatings on metallic turbine components (ref. 2). Prior collaborative research between the NASA Glenn Research Center and the Allison Advanced Development Company (AADC) demonstrated that bond coats sandwiched between PMCs and high-quality plasma-sprayed, erosion-resistant coatings substantially improved the erosion resistance of PMCs (ref. 3). One unresolved problem in this earlier collaboration was that there was no easy, accurate way to measure the coating erosion wear scar. Coating wear was determined by both profilometry and optical microscopy. Both techniques are time consuming. Wear measurement by optical microscopy requires sample destruction and does not provide a comprehensive measure of the entire wear volume. An even more subtle, yet critical, problem is that these erosion coatings contain two or more materials with different densities. Therefore, simply measuring specimen mass loss before and after erosion will not provide an accurate gauge for coating and/or substrate volume loss. By using a noncontact technique called scanning optical interferometry, which was recently developed at Glenn, researchers can accurately determine the wear performance of erosion-coated PMCs while preserving the sample. An example of this interferometry technique is shown in the preceding figure for an erosion-coated inlet guide vane from a Rolls Royce AE3007 regional gas turbine jet engine. Erosion was conducted with coated and uncoated PMC vanes, with the abrasive material moving at a velocity of 229 m/s at impingement angles of 20 and 90 degrees. The coatings for PMCs remarkably reduced the erosion volume loss by a factor of approximately 10. Currently, several erosion coatings for PMCs are being compared and downselected for engine testing at Rolls Royce

    Nestedness of Ectoparasite-Vertebrate Host Networks

    Get PDF
    Determining the structure of ectoparasite-host networks will enable disease ecologists to better understand and predict the spread of vector-borne diseases. If these networks have consistent properties, then studying the structure of well-understood networks could lead to extrapolation of these properties to others, including those that support emerging pathogens. Borrowing a quantitative measure of network structure from studies of mutualistic relationships between plants and their pollinators, we analyzed 29 ectoparasite-vertebrate host networks—including three derived from molecular bloodmeal analysis of mosquito feeding patterns—using measures of nestedness to identify non-random interactions among species. We found significant nestedness in ectoparasite-vertebrate host lists for habitats ranging from tropical rainforests to polar environments. These networks showed non-random patterns of nesting, and did not differ significantly from published estimates of nestedness from mutualistic networks. Mutualistic and antagonistic networks appear to be organized similarly, with generalized ectoparasites interacting with hosts that attract many ectoparasites and more specialized ectoparasites usually interacting with these same “generalized” hosts. This finding has implications for understanding the network dynamics of vector-born pathogens. We suggest that nestedness (rather than random ectoparasite-host associations) can allow rapid transfer of pathogens throughout a network, and expand upon such concepts as the dilution effect, bridge vectors, and host switching in the context of nested ectoparasite-vertebrate host networks

    Interactions of SV40 large T antigen and other viral proteins with retinoblastoma tumour suppressor

    No full text
    Simian virus 40 large T antigen, human papilloma virus E7 and adenovirus E1A are all potent oncoproteins that can induce several types of tumours. One of the major functions of these oncoproteins is to interact with the retinoblastoma tumour suppressor protein, Rb, a master switch of the mammalian cell cycle, and to inactivate its function. Rb promotes cell-cycle arrest by recruiting and regulating proteins involved in the transcription of cell proliferation genes. The binding of viral oncoproteins to Rb disrupts the Rb-E2F complex, a central component in the Rb-mediated cell-cycle network. The crystal structures of Rb pocket-viral oncoprotein complexes indicate that the viral proteins recognise a highly conserved region in the Rb pocket through a common motif, LxCxE, and through other unique regions within each viral protein, Although the mechanism of Rb inactivation by viral proteins is not fully understood, information at the atomic level about the interactions between the Rb pocket and viral proteins is providing some insights into how viral proteins dissociate E2F from Rb and thus how they deregulate the cell cycle.close303

    Emergent and Reemergent Arboviruses in South America and the Caribbean: Why So Many and Why Now?

    No full text
    corecore