343 research outputs found

    Clinical and serological features of systemic sclerosis in a multicenter African American cohort: Analysis of the genome research in African American scleroderma patients clinical database.

    Get PDF
    Racial differences exist in the severity of systemic sclerosis (SSc). To enhance our knowledge about SSc in African Americans, we established a comprehensive clinical database from the largest multicenter cohort of African American SSc patients assembled to date (the Genome Research in African American Scleroderma Patients (GRASP) cohort).African American SSc patients were enrolled retrospectively and prospectively over a 30-year period (1987-2016), from 18 academic centers throughout the United States. The cross-sectional prevalence of sociodemographic, clinical, and serological features was evaluated. Factors associated with clinically significant manifestations of SSc were assessed using multivariate logistic regression analyses.The study population included a total of 1009 African American SSc patients, comprised of 84% women. In total, 945 (94%) patients met the 2013 American College of Rheumatology/European League Against Rheumatism (ACR/EULAR) classification criteria for SSc, with the remaining 64 (6%) meeting the 1980 ACR or CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, telangiectasia) criteria. While 43% were actively employed, 33% required disability support. The majority (57%) had the more severe diffuse subtype and a young age at symptom onset (39.1 ± 13.7 years), in marked contrast to that reported in cohorts of predominantly European ancestry. Also, 1 in 10 patients had a severe Medsger cardiac score of 4. Pulmonary fibrosis evident on computed tomography (CT) chest was present in 43% of patients and was significantly associated with anti-topoisomerase I positivity. 38% of patients with CT evidence of pulmonary fibrosis had a severe restrictive ventilator defect, forced vital capacity (FVC) ≤50% predicted. A significant association was noted between longer disease duration and higher odds of pulmonary hypertension, telangiectasia, and calcinosis. The prevalence of potentially fatal scleroderma renal crisis was 7%, 3.5 times higher than the 2% prevalence reported in the European League Against Rheumatism Scleroderma Trials and Research (EUSTAR) cohort.Our study emphasizes the unique and severe disease burden of SSc in African Americans compared to those of European ancestry

    An Apicoplast Localized Ubiquitylation System Is Required for the Import of Nuclear-encoded Plastid Proteins

    No full text
    Apicomplexan parasites are responsible for numerous important human diseases including toxoplasmosis, cryptosporidiosis, and most importantly malaria. There is a constant need for new antimalarials, and one of most keenly pursued drug targets is an ancient algal endosymbiont, the apicoplast. The apicoplast is essential for parasite survival, and several aspects of its metabolism and maintenance have been validated as targets of anti-parasitic drug treatment. Most apicoplast proteins are nuclear encoded and have to be imported into the organelle. Recently, a protein translocon typically required for endoplasmic reticulum associated protein degradation (ERAD) has been proposed to act in apicoplast protein import. Here, we show ubiquitylation to be a conserved and essential component of this process. We identify apicoplast localized ubiquitin activating, conjugating and ligating enzymes in Toxoplasma gondii and Plasmodium falciparum and observe biochemical activity by in vitro reconstitution. Using conditional gene ablation and complementation analysis we link this activity to apicoplast protein import and parasite survival. Our studies suggest ubiquitylation to be a mechanistic requirement of apicoplast protein import independent to the proteasomal degradation pathway.This work was funded by grants from the National Institutes of Health to BS (AI 64671) and funds provided by the University of California, Riverside to KLR. SA was supported by a predoctoral fellowship from the American Heart Association, and GGD by a C.J. Martin Overseas Fellowship from the Australian National Health and Medical Research Council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Breathomics can discriminate between anti IgE-treated and non-treated severe asthma adults

    Get PDF
    Rationale: Omalizumab, an anti-IgE monoclonal antibody, is indicated in adults with severe persistent allergic asthma. Exhaled molecular markers can provide phenotypic information in asthma. Objectives: Determine whether adults with severe asthma on omalizumab (anti-IgE+) have a different breathprint compared with those who were not on anti-IgE therapy (anti-IgE-) as assessed by eNoses and gas chromatography/mass spectrometry (GC/MS) (breathomics). Methods: This was a cross-sectional analysis of the U- BIOPRED adult cohort. Severe asthma was defined by IMI-criteria [Bel, Thorax 2011]. Anti-IgE+ patients were on a regular treatment with s.c. omalizumab (150-375 mg) every 2-4 weeks. Exhaled volatile compounds trapped on adsorption tubes were analysed by a centralized eNose platform (Owlstone Lonestar, two Cyranose 320, Comon Invent, Tor Vergata TEN), including a total of 190 sensors, and GC/MS. Recursive feature elimination (http://topepo.github.io/caret/rfe.html) was used for feature selection and random forests, more robust to overfitting, for classification. Results: 9 anti- IgE+ (females/males 2/7, age 52.6±16.3 years, mean±SD, 1/2/6 current/ex/nonsmokers, pre-bronchodilator FEV1 70.6±21.1% predicted value) and 30 anti-IgE- patients (18/12 females/males, age 53.2±14.2 years, 0/16/14 current/ex/nonsmokers, pre-bronchodilator FEV1 59.6±30.7% predicted value) were studied. Conclusions: Preliminary results suggest that breathomics can distinguish between anti-IgE+ and anti-IgE- severe asthma patients

    Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations.

    Get PDF
    Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10(-9)). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma

    Single-cell RNA sequencing of liver fine-needle aspirates captures immune diversity in the blood and liver in chronic hepatitis B patients

    Get PDF
    Background and Aims: HBV infection is restricted to the liver, where it drives exhaustion of virus-specific T and B cells and pathogenesis through dysregulation of intrahepatic immunity. Our understanding of liver-specific events related to viral control and liver damage has relied almost solely on animal models, and we lack useable peripheral biomarkers to quantify intrahepatic immune activation beyond cytokine measurement. Our objective was to overcome the practical obstacles of liver sampling using fine-needle aspiration and develop an optimized workflow to comprehensively compare the blood and liver compartments within patients with chronic hepatitis B using single-cell RNA sequencing. Approach and Results: We developed a workflow that enabled multi-site international studies and centralized single-cell RNA sequencing. Blood and liver fine-needle aspirations were collected, and cellular and molecular captures were compared between the Seq-Well S3 picowell-based and the 10× Chromium reverse-emulsion droplet–based single-cell RNA sequencing technologies. Both technologies captured the cellular diversity of the liver, but Seq-Well S3 effectively captured neutrophils, which were absent in the 10× dataset. CD8 T cells and neutrophils displayed distinct transcriptional profiles between blood and liver. In addition, liver fine-needle aspirations captured a heterogeneous liver macrophage population. Comparison between untreated patients with chronic hepatitis B and patients treated with nucleoside analogs showed that myeloid cells were highly sensitive to environmental changes while lymphocytes displayed minimal differences. Conclusions: The ability to electively sample and intensively profile the immune landscape of the liver, and generate high-resolution data, will enable multi-site clinical studies to identify biomarkers for intrahepatic immune activity in HBV and beyond.</p

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Determinants of enhanced vulnerability to coronavirus disease 2019 in UK patients with cancer: a European study

    Get PDF
    Despite high contagiousness and rapid spread, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to heterogeneous outcomes across affected nations. Within Europe (EU), the United Kingdom (UK) is the most severely affected country, with a death toll in excess of 100,000 as of January 2021. We aimed to compare the national impact of coronavirus disease 2019 (COVID-19) on the risk of death in UK patients with cancer versus those in continental EU. Methods: We performed a retrospective analysis of the OnCovid study database, a European registry of patients with cancer consecutively diagnosed with COVID-19 in 27 centres from 27th February to 10th September 2020. We analysed case fatality rates and risk of death at 30 days and 6 months stratified by region of origin (UK versus EU). We compared patient characteristics at baseline including oncological and COVID-19-specific therapy across UK and EU cohorts and evaluated the association of these factors with the risk of adverse outcomes in multivariable Cox regression models. Findings: Compared with EU (n = 924), UK patients (n = 468) were characterised by higher case fatality rates (40.38% versus 26.5%, p < 0.0001) and higher risk of death at 30 days (hazard ratio [HR], 1.64 [95% confidence interval {CI}, 1.36-1.99]) and 6 months after COVID-19 diagnosis (47.64% versus 33.33%; p < 0.0001; HR, 1.59 [95% CI, 1.33-1.88]). UK patients were more often men, were of older age and have more comorbidities than EU counterparts (p < 0.01). Receipt of anticancer therapy was lower in UK than in EU patients (p < 0.001). Despite equal proportions of complicated COVID-19, rates of intensive care admission and use of mechanical ventilation, UK patients with cancer were less likely to receive anti-COVID-19 therapies including corticosteroids, antivirals and interleukin-6 antagonists (p < 0.0001). Multivariable analyses adjusted for imbalanced prognostic factors confirmed the UK cohort to be characterised by worse risk of death at 30 days and 6 months, independent of the patient's age, gender, tumour stage and status; number of comorbidities; COVID-19 severity and receipt of anticancer and anti-COVID-19 therapy. Rates of permanent cessation of anticancer therapy after COVID-19 were similar in the UK and EU cohorts. Interpretation: UK patients with cancer have been more severely impacted by the unfolding of the COVID-19 pandemic despite societal risk mitigation factors and rapid deferral of anticancer therapy. The increased frailty of UK patients with cancer highlights high-risk groups that should be prioritised for anti-SARS-CoV-2 vaccination. Continued evaluation of long-term outcomes is warranted

    De novo mutations in GRIN1 cause extensive bilateral polymicrogyria

    Get PDF
    Polymicrogyria is a malformation of cortical development. The aetiology of polymicrogyria remains poorly understood. Using whole-exome sequencing we found de novo heterozygous missense GRIN1 mutations in 2 of 57 parent-offspring trios with polymicrogyria. We found nine further de novo missense GRIN1 mutations in additional cortical malformation patients. Shared features in the patients were extensive bilateral polymicrogyria associated with severe developmental delay, postnatal microcephaly, cortical visual impairment and intractable epilepsy. GRIN1 encodes GluN1, the essential subunit of the N-methyl-d-aspartate receptor. The polymicrogyria-associated GRIN1 mutations tended to cluster in the S2 region (part of the ligand-binding domain of GluN1) or the adjacent M3 helix. These regions are rarely mutated in the normal population or in GRIN1 patients without polymicrogyria. Using two-electrode and whole-cell voltage-clamp analysis, we showed that the polymicrogyria-associated GRIN1 mutations significantly alter the in vitro activity of the receptor. Three of the mutations increased agonist potency while one reduced proton inhibition of the receptor. These results are striking because previous GRIN1 mutations have generally caused loss of function, and because N-methyl-d-aspartate receptor agonists have been used for many years to generate animal models of polymicrogyria. Overall, our results expand the phenotypic spectrum associated with GRIN1 mutations and highlight the important role of N-methyl-d-aspartate receptor signalling in the pathogenesis of polymicrogyria
    corecore