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Abstract

Although the genome wide supported psychosis susceptibility neurogranin (NRGN) gene is expressed in human
brains, it is unclear how it impacts brain morphology in schizophrenia. We investigated the influence of NRGN
rs12807809 on cortical thickness, subcortical volumes and shapes in patients with schizophrenia. One hundred and
fifty six subjects (91 patients with schizophrenia and 65 healthy controls) underwent structural MRI scans and their
blood samples were genotyped. A brain mapping algorithm, large deformation diffeomorphic metric mapping, was
used to perform group analysis of subcortical shapes and cortical thickness. Patients with risk TT genotype were
associated with widespread cortical thinning involving frontal, parietal and temporal cortices compared with controls
with TT genotype. No volumetric difference in subcortical structures (hippocampus, thalamus, amygdala, basal
ganglia) was observed between risk TT genotype in patients and controls. However, patients with risk TT genotype
were associated with thalamic shape abnormalities involving regions related to pulvinar and medial dorsal nuclei. Our
results revealed the influence of the NRGN gene on thalamocortical morphology in schizophrenia involving
widespread cortical thinning and thalamic shape abnormalities. These findings help to clarify underlying NRGN
mediated pathophysiological mechanisms involving cortical-subcortical brain networks in schizophrenia.
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Introduction

Schizophrenia is a heterogeneous psychiatric disorder with a
complex etiology. There is a strong genetic component
involved in the pathogenesis of schizophrenia. In recent years
multiple genetic markers have been identified as conferring
increased risk for schizophrenia from genome wide association
studies [1,2]. One of these markers is the rs12807809 (T/C)
single nucleotide polymorphism (SNP) in the neurogranin
(NRGN) gene [2]. The NRGN gene is localized on
chromosome 11q24.2, contains 4 exons and 3 introns and the
78 amino acid protein is encoded by part of exon 1 and 2 [3].
The NRGN protein is a postsynaptic protein that is expressed
in the human brain and involved in the regulation of calmodulin
availability in neurons [4,5]. NRGN has been implicated with
important roles in synaptic signaling, plasticity, neural
development, learning and memory [6,7].

Extant sparse structural and functional neuroimaging studies
which sought to correlate the effect of the NRGN gene on brain
structure or function have found changes of brain activations
involving the frontal cortex, medial temporal lobe and cingulate
cortices in healthy controls [8,9,10]. Pohlack and colleagues [9]
reported reductions in hippocampal function in individuals who
were risk T-allele homozygote during the acquisition phase of a
contextual fear paradigm whilst Krug et al. (2011) [8] found that
the risk T-allele homozygote showed differential activation
patterns of the anterior and posterior cingulate cortices during
an episodic memory task compared with C-allele carriers. In a
recent study combining structural and functional magnetic
resonance neuroimaging [10], it was noted that there was no
NRGN rs12807809 effect on brain structures or functions.
However, C-allele carriers showed a load independent
decrease of brain activity in the left superior frontal gyrus within
a working memory task but not individuals who were risk T-
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allele homozygotes, suggesting that the risk TT genotype may
mediate reduction in processing efficiency within the frontal
lobe networks. In the only imaging-genetic study involving
patients with schizophrenia, Ohi and colleagues [11] found that
patients with schizophrenia who are risk T-allele carriers had
smaller left anterior cingulate grey matter volumes.

To the best of our knowledge, there is no study examining
the impact of putative genome wide supported psychosis
susceptibility NRGN gene on neural substrates such as cortical
thickness and other subcortical brain structures such as
amygdala, thalamus, basal ganglia in patients suffering from
schizophrenia. First, this is relevant in the context of recent
meta-analytic data [12] which highlighted that genetic risk for
schizophrenia is still better indexed by brain structure and
function rather than by other measures such as cognitive
measures. Second, it is thought that as brain grey matter
volume is a composite of surface area measurements and
cortical thickness with different genetic influences, the latter
parameters such as cortical thickness are hence preferred over
grey matter volumes for determination of genetic effects on
brain structures [13]. Third, elucidation of changes in cortical
thickness and subcortical volumetric and shape changes
together would allow insights into any disruptions of cortical-
subcortical circuitry and genes mediating these brain structural
changes. Thus in this study, we aimed to study the influence of
NRGN rs1280709 on cortical thickness and volumes and
shapes of subcortical structures in patients with schizophrenia
and in healthy subjects. Based on previous data of frontal-
limbic and fronto-thalamic circuitry disturbances in
schizophrenia [14,15] and sparse data relevant to NRGN effect
in psychosis, we hypothesized that patients with schizophrenia
with risk T homozygote genotype were associated with cortical
thinning involving frontal, temporal regions as well as
subcortical structural abnormalities implicating the thalamus
and hippocampus.

Methods

Subjects
The study was approved by the National Healthcare Group

Institutional Review Board as well as the Institutional Review
Board of the National Neuroscience Institute, Singapore. All
subjects gave their written informed consent following a
complete description of the study.

A total of one hundred and fifty six subjects of Chinese
ethnicity were recruited for the study. Subjects with
schizophrenia (SCZ) were recruited from the Institute of Mental
Health, Singapore, while healthy comparison subjects (CON)
were recruited from the community via advertisements.

Ninety one patients with a DSM-IV diagnosis of
schizophrenia participated this study. Confirmation of the
diagnosis was made for all patients by a psychiatrist using
information obtained from the patient’s clinical history, existing
medical records, interviews with significant others as well as
the administration of the Structured Clinical Interview for DSM-
IV disorders-Patient Version (SCID-I/P). The patients were
maintained on a stable dose of antipsychotic medications (60
on second generation antipsychotics, 28 on first generation

antipsychotics and 3 on a combination of first and second
generation antipsychotics; mean daily chlorpromazine
equivalents of 242 mg (range 30 to 600 mg) for at least two
week and did not have their medications withdrawn for the
purpose of the study. None of the subjects had any history of
any significant neurological illness such as epilepsy, head
trauma, or cerebrovascular accidents. No subject met DSM-IV
criteria for alcohol abuse or other substance abuse within the
preceding three months of their recruitment into the study.

Sixty five healthy comparison subjects were recruited and
screened using the SCID Non-Patient version (SCID-I/NP) to
ensure that they did not have any Axis I psychiatric disorder.
None of them had any history of a major neurological illness,
medical illnesses, substance abuse or psychotropic medication
use.

Both patients and controls were further split into groups
based on their genotype (TT vs TC+CC). In total, 51 patients
and 34 controls were T-allele homozygotes while 40 patients
and 31 controls were C-allele carriers.

Clinical Measures
The Positive and Negative Syndrome Scale (PANSS) was

used to assess psychopathology and symptom severity, while
the Global Assessment of Functioning (GAF) Scale was used
to assess social, occupational and psychological functioning.
Both scales were administered by a psychiatrist to all the
participants. Table 1 summarizes the demographic
characteristics of each of the 4 groups and the clinical scores
for the SCZ groups.

Table 1. Demographics and clinical features of the sample.

 

CON T-allele
Homozygotes
(n=34)

CON C-
allele
carriers
(n=31)

SCZ T-allele
homozygotes
(n=51)

SCZ C-allele
carriers
(n=40)

p-
value

Age (years) 36.6±11.2 36.6±10.3 38.3±9.72 38.6±9.72 0.764
Gender
(Female/Male)

22/12 20/11 40/11 28/12 0.452

Handedness
(% right)

94% 90% 94% 83% 0.238

Education
(years)

13.7±1.91 14.1±2.14 11.8±1.86 11.1±2.72 <0.001

Mean Illness
Duration
(years)

- - 7.96±7.90 6.70±8.05 0.455

Antipsychotic
dose (mg CPZ
equivalents)

- - 219.1±198.3 220.6±175.9 0.967

PANSS total
scores

- - 38.0±7.45 40.6±11.2 0.195

GAF score - - 52.4±17.0 49.8±19.0 0.486

Note: CON – control; SCZ – schizophrenia; CPZ – Chlorpromazine; PANSS –
Positive and Negative Syndrome Scale; GAF – Global Assessment of Functioning.
Significant p-values are denoted in bold font.
doi: 10.1371/journal.pone.0085603.t001
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Image acquisition and Analysis
High-resolution T1-weighted Magnetization Prepared Rapid

Gradient Recalled Echo (MPRAGE, TR=7.2s; TE=3.3ms; flip
angle=8°, field of view=230 mm × 230 mm; acquisition
matrix=256 × 256) images were acquired at the National
Neuroscience Institute, Singapore, on a 3-Tesla whole body
scanner (Philips Achieva, Philips Medical System, Eindhoven,
The Netherlands) with a SENSE head coil. Stability of a high
signal to noise ratio was assured through a regular automated
quality control procedure.

The gray matter, white matter, cerebral spinal fluid (CSF),
lateral ventricles, and subcortical structures (amygdala,
hippocampus, caudate, putamen, globus pallidus, thalamus)
were automatically segmented from the intensity-
inhomogeneity corrected T1-weighted MR images [16]. The
subcortical and lateral ventricular volumes were calculated
from the segmented image. For subcortical shape analysis, the
subcortical and lateral ventricular structures were generated
using the prior shape information of an atlas that were created
from 41 manually labeled individual structures via a LDDMM
atlas generation procedure [17]. Shape variations of individual
subjects relative to the atlas were characterized by the
Jacobian determinant of the deformation in the logarithmic
scale, where the deformation transformed the atlas shape to be
similar to subjects. This measure, termed as the “deformation
map”, represents the ratio of each subject’s structural volume
to the atlas volume in the logarithmic scale: i.e. positive values
correspond to expansion, while negative values correspond to
compression of the subject’s structure relative to the atlas at
each anatomical location.

For cortical thickness, an inner surface was constructed at
the boundary between WM and GM and then propagated to the
outer surface at the boundary between GM and CSF. The
cortical thickness was measured as the distance between the
corresponding points on the inner and outer surfaces [18]. A
cortical surface mapping algorithm, large deformation
diffeomorphic metric mapping (LDDMM), was then applied to
align individual cortical surfaces to an atlas cortical surface for
group analysis of cortical thickness [19].

Genotyping Procedures
Genotyped data (SNP rs12807809) were obtained through

an ongoing genetic association study using the Illumina
HumanHap 250K and 317K Beadchips (Illumina Inc., San
Diego, USA) at the Genome Institute of Singapore, Agency for
Science, Technology and Research. The DNA sample was
isothermally amplified to be subsequently fragmented by a
controlled enzymatic process that does not require gel
electrophoresis. The DNA was consequently alcohol
precipitated, resuspended and hybridized. Allelic specificity
was conferred by enzymatic single-based extension reaction
followed by fluorescence staining. The intensities of the beads’
fluorescence were picked up by the Illumina BeadArray Reader
and analyzed using Illumina BeadStudio software. Single
nucleotide polymorphisms (SNPs) that lie within the NRGN
gene locus were identified from the Database of Single
Nucleotide Polymorphisms (dbSNP, available from: http://
www.ncbi.nlm.nih.gov/SNP/). These were then matched with

the marker list from Illumina to obtain the SNP of interest,
rs12807809 (ss20856537) for analysis. For quality control, the
samples were only included for further analysis if the
genotyping rate was >98%, call rate >90%, a minor allele
frequency (MAF) > 5% and the samples were in Hardy-
Weinberg equilibrium (HWE p > 0.05). Statistical analyses were
performed using the Haploview v4.2 (Barrett et al., 2005) and
PASW18.

Statistical Analysis
Demographic and clinical characteristics among the four

groups of CON T-allele homozygotes, CON C-allele carriers,
SCZ T-allele homozygotes, SCZ C-allele carriers were
compared using chi-square tests for categorical variables and
ANOVA for continuous variables. Post-hoc analysis for
continuous variables was conducted with Bonferroni’s
corrections for multiple comparisons. ANOVA was also used to
examine group differences in total brain volume (TBV) and
subcortical volumes with Bonferroni’s test for multiple
comparisons, with a p value < 0.0026 (0.05/19 structural
volumetric measures) considered as the threshold for
significance.

We first examined the interaction effect between diagnosis
and genotype on subcortical shapes and cortical thickness. For
this, the subcortical deformation maps and cortical thickness
maps were smoothed using a 30 mm full-width-at-half-
maximum Gaussian filter [20]. Linear regression with diagnosis
and genetic type and their interaction as the main factors was
examined at each vertex. Results at each surface vertex were
thresholded at the level of significance (p<0.001) and then
corrected for multiple comparisons at the cluster level of
significance (p<0.05). Each cluster size must be greater than
358mm2, which was determined based on random field theory
[21]. We additionally examined pairwise group difference in
subcortical shapes and cortical thickness using linear
regression with groups (C-allele control carriers, T-allele control
homozygotes, C-allele schizophrenia carriers, and T-allele
schizophrenia homozygotes) as the main factor. Further
analysis was conducted when years of education was
considered as covariate.

Results

Sample Demographics and Clinical Features
The ratio of T-allele homozygotes to C-allele carriers is

54.5% to 45.5%, which is more balanced than the allele
frequency distributions in Krug et al. (68.9% T-allele
homozygotes), Pohlack et al. (67.9% T-allele homozygotes) or
Rose et al. (72.1% T-allele homozygotes) [8,9,10].

No group differences were found in age (F3,152 = 0.41, p =
0.746), sex (χ2 = 2.63, p = 0.452), or handedness (χ2 = 4.22, p
= 0.238) among CON T-allele homozygotes, SCZ T-allele
homozygotes, CON C-allele carriers, and SCZ C-allele carriers.
These variables were therefore not included as covariates in
our subsequent analysis. Group differences in years of
education were found, (F3,152 = 16.53, p < 0.001), with both
patient groups having fewer years of education than the control
groups. The mean difference in years between SCZ T-allele
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homozygotes and CON T-allele homozygotes and C-allele
carriers was 1.94 ± 0.48 (p = 0.001) and 2.36 ± 0.50 (p <
0.001) respectively, while the mean difference between the
SCZ C-allele carriers and the CON T-allele homozygotes and
CON C-allele carriers were 2.58 ± 0.51 (p < 0.001) and 3.00 ±
0.52 (p < 0.001) respectively. There were no group differences
found in the PANSS total score (F1,89 = 1.70, p = 0.195), GAF
score (F1,89 = 0.49, p = 0.486), duration of illness (F1,89 = 0.56, p
= 0.455), or antipsychotic dose (F1,89 = 0.002, p = 0.967)
between SCZ T-allele homozygotes and SCZ C-allele carriers.

Total Brain Volume, Gray and White Matter Volumes
and Subcortical Volumes

Our analysis did not reveal any interaction effects of
diagnosis and genotype on subcortical volumes after correcting
for multiple comparisons (Table 2). For pairwise group
comparisons, no group differences were found in any
structures except for the lateral ventricles after correcting for
multiple comparisons (Table 2). There was a diagnosis effect
on the left ventricle volume (F3,152 = 10.513, p = 0.001) and right
ventricle volume (F3,152 = 12.758, p < 0.001), with larger
ventricular volumes in the SCZ group. These results remain
unchanged after controlling for years of education.

Effect of Risk Allele on Cortical Thickness
No interaction effects of diagnosis and genotype on cortical

thickness after correcting for multiple comparisons. However,
Figure 1 and Figure S1 in the File S1 show the results of
pairwise group comparisons on cortical thickness. Differences

in cortical thickness were most widespread in SCZ T-allele
homozygotes when compared to CON T-allele homozygotes
(Figure 1, top panel). Specifically, SCZ T-allele homozygotes
had thinner cortex across wide areas of the frontal, temporal
and parietal lobes. Areas affected bilaterally included the
dorsolateral prefrontal cortex, orbitofrontal gyrus, superior
frontal gyrus, inferior frontal gyrus, temporopolar area, fusiform
gyrus, entorhinal cortex, primary and auditory association
cortices, the anterior and posterior regions of the rostral medial
frontal cortex, and the supramarginal gyrus. In the left
hemisphere, thinner cortex was found in the primary motor
cortex, primary somatosensory cortex, somatosensory
association cortices, and orbital medial frontal cortex. In the
right hemisphere, the middle temporal gyrus and the entire
superior temporal gyrus were thinner in the SCZ T-allele
homozygotes compared with CON T-allele homozygotes.

Compared to SCZ C-allele carriers (Figure 1, middle panel),
SCZ T-allele homozygotes had thinner cortex in the left
entorhinal cortex. Compared to CON C-allele carriers (Figure 1,
bottom panel), SCZ T-allele homozygotes had thinner cortex
bilaterally in the orbitofrontal cortex and inferior frontal gyrus,
the isthmus, supramarginal gyrus, superior parietal gyrus and
precuneus in the left hemisphere and the orbital medial frontal
cortex, frontal pole and superior frontal gyrus in the right
hemisphere. The other group comparisons are reported in the
Summplement.

We repeated the analysis for the above comparisons while
controlling for years of education. Our results remain largely
unchanged.

Table 2. The effects of diagnosis and genotype on brain volumes.

  CON (65)  SCZ (91)  ANOVA

  TT  C carriers  TT  C carriers  Diagnosis effect  Genotype effect  Interaction

Structure Volumes  Mean ± Standard Deviations  F P  F P  F P
Total Brain (ml)  1107±118  1096±90  1099±86  1063±98  1.606 0.207  2.262 0.135  0.650 0.421
Left Gray Matter (ml)  226±26  218±20  218±19  210±19  5.721 0.018  4.764 0.031  0.008 0.929
Right Gray Matter (ml)  225±26  219±21  218±19  210±19  5.051 0.026  3.821 0.052  0.102 0.750
Left White Matter (ml)  235±28  236±23  237±21  229±26  0.343 0.559  0.661 0.417  1.078 0.301
Right White Matter (ml)  235±28  237±24  237±23  230±26  0.396 0.530  0.490 0.485  1.208 0.273
Left Amygdala (mm3)  1520±276  1547±298  1429±380  1391±347  5.078 0.026  0.009 0.925  0.352 0.554
Right Amygdala (mm3)  1796±266  1734±331  1647±390  1625±307  5.622 0.019  0.584 0.446  0.134 0.714
Left Caudate (mm3)  3064±865  3372±670  3396±629  3274±621  1.072 0.302  0.678 0.412  3.623 0.059
Right Caudate (mm3)  3046±732  3359±598  3306±682  3150±712  0.052 0.820  0.493 0.484  4.386 0.038
Left Hippocampus (mm3)  3806±454  3784±488  3671±634  3643±372  2.772 0.098  0.090 0.764  0.001 0.973
Right Hippocampus (mm3)  3943±468  3720±624  3767±694  3763±489  0.486 0.487  1.405 0.238  1.306 0.255
Left Pallidus (mm3)  1745±284  1777±208  1898±231  1858±250  8.728 0.004  0.010 0.922  0.810 0.370
Right Pallidus (mm3)  1675±253  1830±662  1787±375  1713±242  0.002 0.966  0.387 0.535  3.045 0.083
Left Putamen (mm3)  6162±1087  6376±747  6486±764  6332±719  1.067 0.303  0.047 0.828  1.846 0.176
Right Putamen (mm3)  6288±750  5791±1404  6233±1133  6217±662  1.234 0.268  2.367 0.126  2.074 0.152
Left Thalamus (mm3)  6691±863  7002±727  6756±638  6687±708  5.046 0.021  0.060 0.807  0.116 0.734
Right Thalamus (mm3)  6876±842  6903±736  6654±613  6526±701  6.621 0.011  0.186 0.667  0.447 0.505
Left Ventricle (mm3)  8272±4030  9125±2993  10881±3951  10980±5166  10.513 0.001  0.478 0.490  0.300 0.585
Right Ventricle (mm3)  7604±3550  7984±2388  9882±3086  9620±3924  12.758 < 0.001  0.011 0.915  0.343 0.559

Note: CON – control; SCZ – schizophrenia.
doi: 10.1371/journal.pone.0085603.t002
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Effect of Risk Allele on Subcortical Shapes
No interaction effects of diagnosis and genotype on

subcortical shapes after correcting for multiple comparisons.
However, significant shape differences between the groups
were found in the thalamus (Figure 2 and Figure S2 in File
S1). When compared to CON T-allele homozygotes, inward-
surface deformation was observed in the medial-inferior aspect
of the left thalamus, mostly corresponding to the medial-inferior
aspect of the left pulvinar nucleus in SCZ T-allele homozygotes
(Figure 2, top panel). Compared to CON C-allele carriers, SCZ
T-allele homozygotes showed more widespread inward-surface
deformation across the inferior and posterior aspects of the
thalamus bilaterally and the medial aspect of the right thalamus
(Figure 2, middle panel). These regions mostly correspond to

the pulvinar, ventral and mediodorsal nuclei of the thalamus.
No group difference in the thalamic shapes was found between
SCZ T-allele homozygotes and SCZ C-allele carriers. The
other group comparisons are reported in the File S1.

We repeated the analysis for the above comparisons while
controlling for years of education. Our results remain largely
unchanged.

Discussion

Although interactive effects of diagnosis and genetic type on
cortical thickness and subcortial shapes were not found, there
were several significant findings in this study. First,
schizophrenia T-allele homozygotes had widespread cortical

Figure 1.  Statistical maps of cortical thickness differences between schizophrenia T-allele homozygotes and: control T-
allele homozygotes (top panel); schizophrenia T-allele homozygotes and schizophrenia C-allele carriers (middle panel);
schizophrenia T-allele homozygotes and control C-allele carriers (bottom panel).  T-values are shown only in the regions with
significant group differences after correction for multiple comparisons. Keys: SCZ – Schizophrenia; CON – Control.
doi: 10.1371/journal.pone.0085603.g001
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thinning involving frontal, parietal and temporal cortices
compared with control T-allele homozygotes. Second, no
volumetric difference in subcortical structures (hippocampus,
thalamus, amygdala, basal ganglia) was observed between risk
T-allele homozygote genotype in patients with schizophrenia
and controls. Third, risk T-allele homozygote genotype was
associated with thalamic shape abnormalities involving regions
related to pulvinar and medial dorsal nucleus in patients with
schizophrenia compared to controls. These findings suggest
that NRGN related brain structural abnormalities are found
involving thalamocortical circuitry.

Our findings of cortical thinning involving frontal, temporal
and parietal cortices are consistent with cortical thickness
changes which have been previously reported in schizophrenia
at different phases of illness including first episode cases
[22,23] as well as in those with chronic illness [24]. Crespo-
Facorro et al. [22] reported significant total cortical thinning and
especially involving frontal, temporal and parietal cortices in
their study of 142 patients with first episode schizophrenia and
compared with 83 healthy controls. This was consistent with
other studies of similar patient groups and involving thinning of

fronto-temporal-parietal cortical regions [25,26]. Widespread
cortical thinning involving frontal, temporal and parietal regions
were found in patients with chronic schizophrenia, highlighting
that schizophrenia is associated with a potential
neurodevelopmental deficits involving disruption of cortical
maturation [27,28]. In addition, these changes in cortical
thickness have been found to progress over time [29,30]. Cobia
et al. [29] found in their 2 year follow up study of 20 patients
with schizophrenia that increased cortical thinning was found in
middle frontal, middle and superior temporal gyrus in the
context of stable neurocognitive performance and
symptomatology. In the other longitudinal study of cortical
thinning in schizophrenia, it was found that excessive cortical
thinning occurred in bilateral temporal cortex and left frontal
region [30].

Do putative psychosis susceptibility genes have a role in
influencing these cortical thickness changes? A previous study
which examined 48 patients with schizophrenia, 66 first-degree
non-psychotic relatives of schizophrenia patients, 27
community probands and their 77 relatives replicated frontal
and temporal thinning but suggested differential genetic

Figure 2.  Statistical maps of thalamic shape differences between schizophrenia T-allele homozygotes and control T-allele
homozygotes (top panel); schizophrenia T-allele homozygotes and control C-allele carriers (middle panel).  T-values are
shown only in the regions with significant group differences after the correction of multiple comparisons. Keys: S – superior; I –
inferior; A – anterior; P – posterior; L – left; R – right.
doi: 10.1371/journal.pone.0085603.g002
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influences in that genetic effects may be more prominent in
medial temporal cortex compared with other cortical regions
[31]. Dopamine related catechol-o-methyl transferase (COMT)
val158met polymorphism has been implicated in cortical
maturation processes [32] in that greater val allele dose was
associated with greater cortical thinning in schizophrenia and
their first degree relatives with persisting effects on dorsolateral
prefrontal cortical thickness over time. Dystrobrevin binding
protein 1 (DTNBP1) risk allele has also been associated with
regional cortical thinning [33] in temporal brain regions within a
study of 62 patients with schizophrenia and 42 healthy controls.
In addition, functional D-amino oxidase activator (DAOA) gene
risk variant Arg30Lys (rs2391191) has also been implicated in
cortical thinning in schizophrenia [34].

Whilst we found no difference in subcortical volumes
amongst the four NRGN genotypes, thalamic shape
abnormalities involving the posterior and medial-dorsal regions
of the thalamus were found in schizophrenia with risk TT
genotype. Specifically, our findings of absence of thalamic
volume changes are consistent with some [35,36,37,38] but not
all [39,40] earlier structural MRI studies examining thalamic
volume changes in schizophrenia although not in context of
genetic influences [41,42]. The thalamic shape abnormalities
are consistent with studies which also found thalamic shape
changes involving similar regions [43,44]. Csernansky et al.
[43] used high dimensional brain mapping and reported
thalamic shape changes in anterior and posterior extremes in
their cohort of 52 patients with schizophrenia compared with 65
controls. We found in our earlier study that thalamic shape
deformities included the anterior–medial and posterior–lateral
aspects of the left thalamus, as well as the anterior–ventral
aspect and medial body of the right thalamus in patients with
early onset schizophrenia compared with controls [44], and
which were correlated with poorer executive functioning and
spatial working memory. Subsequent structural neuroimaging
studies [45,46,47] also reported thalamic shape changes
involving regions related to pulvinar nucleus and medial dorsal
nucleus.

The presence of cortical thinning alongside specific thalamic
shape changes point towards the presence of thalamo-cortical
morphological abnormalities in schizophrenia which may be
partially mediated by NRGN. These data support extant
theories of thalamo-cortical dysconnectivity in the
pathophysiology of schizophrenia [48,49] and argue for specific
involvement of differential thalamic networks implicating
different thalamic nuclei in this illness. The reasons are at least
threefold, First, this is consistent with previous work
documenting topographical organization of connections as
functionally parallel routes between particular cortical regions
and thalamic nuclei [50], for example, prefrontal cortex is linked
to the medial dorsal nucleus and the anterior nucleus of
thalamus and visual association cortex is linked to the pulvinar
nucleus. Second, there is neuropathological evidence of
reductions of thalamic neurons involving specific medial dorsal
nucleus [51,52] and pulvinar [53] as well as frontal cortical
regions [54]. Third, these thalamo-cortical structural changes
may underlie functional and cognitive changes as highlighted
by recent studies which reported differential thalamo-cortical

connectivity in resting state functional MRI investigations of
schizophrenia [55] and decrease in total connectivity of
thalamus to prefrontal cortex which correlated with working
memory task [56].

The precise functions of NRGN and how it mediates cortical
maturation and observed cortical thinning and thalamic shape
abnormalities in schizophrenia are unclear at this juncture. It is
known that NRGN regulates the local availability of Calmodulin
(CaM) [2], which acts as a signaling hub to transmit Ca2+ ions in
neurons [57]. Upon Ca2+ binding, Ca2+/CaM associates with a
number of protein kinases that are critical for proper neural
development [58] such as calcium/calmodulin-dependent
protein kinase I, II and kinase (CaMKI, CaMKII and CaMKK). It
has been shown that CaMKK activation of CaMKIα leads to
axonal growth whereas CaMKK activation of CaMKIγ promotes
dendritic outgrowth [59], hence CaMKI-CaMKK signaling may
have direct impact on neuronal development, differentiation
and synaptic plasticity [5]. There is evidence from one earlier
study of reductions of NRGN proteins in prefrontal cortex of
patients with schizophrenia [60]. Thus factors influencing the
expression of NRGN have downstream effects on CaMKI, II
and K signaling, and may subsequently impact on development
of cortical matter and thalamus [7]. In addition, calmodulin
activation of CaMKII strengthens NMDA receptor signalling
[61]. Conversely, glutamate activation of NMDA receptors can
lead to calclium influx into neurons and NRGN oxidation.
NRGN, like DAOA, is involved in glutamate pathway regulation
and may mediate effect of hypoglutamatergic function with
impact on neural substrates in schizophrenia [62,63].
Furthermore, recent work has shown that neurotransmitter
metabolism may be severely impaired in cortico-thalamic
networks within MK-801 hypoglutamatergic animal model for
schizophrenia, which is consistent with thalamo-cortical
morphological abnormalities in schizophrenia [64]. Previous
neuropathological studies in schizophrenia have considered
cortical thinning to be the result of reduction or loss of cell
number, cell density, or neuropil and observed that there are
cell specific or layer specific changes in different cortical
regions in schizophrenia [65,66]. Cortical thinning may also be
related to altered minicolumn spacing and organisation within
cortical regions that are related to neuroplastic changes or
dendritic remodelling in the brain [67,68,69]. How these
neuropathological changes are mediated by NRGN and inter-
related putative genetic factors need further investigation.

There are several limitations in this study. First, we did not
perform analyses of other brain structural parameters such as
specific white matter tracts that would provide further evidence
of NRGN mediated connectivity disturbances in schizophrenia.
Second, these findings need to be replicated in other larger
samples. Third, we did not correlate the structural findings with
neurocognitive data which would confer better insight into the
full genetic impact of NRGN risk allele. However, the extant
data of a study involving patients with schizophrenia suggested
no association of NRGN with cognitive function in domains
including general cognitive function, verbal working memory,
spatial memory and attention [70]. Fourth, combinatorial
approach with functional neuroimaging methods would provide
further insights into the effect of NRGN on functional brain
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activations and how they relate to observed structural brain
changes in cortical thickness and subcortical shape in
schizophrenia.

In conclusion, we found evidence for the influence of the
genome wide supported psychosis vulnerability NRGN risk T
genotype on thalamo-cortical morphology in schizophrenia
involving widespread cortical thinning and thalamic shape
abnormalities. These findings should stimulate further
investigation into how these brain structural changes are
related to alterations in brain function as well as the underlying
NRGN mediated pathophysiological mechanisms. This may
further unveil biological factors to allow better understanding of
the genetic and neural basis of this potentially crippling
neuropsychiatric condition.
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