42 research outputs found

    Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology

    Get PDF
    In the decade since the first pan-European testate amoeba-based transfer function for peatland palaeohydrological reconstruction was published, a vast amount of additional data collection has been undertaken by the research community. Here, we expand the pan-European dataset from 128 to 1799 samples, spanning 35° of latitude and 55° of longitude. After the development of a new taxonomic scheme to permit compilation of data from a wide range of contributors and the removal of samples with high pH values, we developed ecological transfer functions using a range of model types and a dataset of ∌1300 samples. We rigorously tested the efficacy of these models using both statistical validation and independent test sets with associated instrumental data. Model performance measured by statistical indicators was comparable to other published models. Comparison to test sets showed that taxonomic resolution did not impair model performance and that the new pan-European model can therefore be used as an effective tool for palaeohydrological reconstruction. Our results question the efficacy of relying on statistical validation of transfer functions alone and support a multi-faceted approach to the assessment of new models. We substantiated recent advice that model outputs should be standardised and presented as residual values in order to focus interpretation on secure directional shifts, avoiding potentially inaccurate conclusions relating to specific water-table depths. The extent and diversity of the dataset highlighted that, at the taxonomic resolution applied, a majority of taxa had broad geographic distributions, though some morphotypes appeared to have restricted ranges

    Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data

    Get PDF
    Transfer functions are now commonly used to reconstruct past environmental variability from palaeoecological data. However, such approaches need to be critically appraised. Testate amoeba-based transfer functions are an established method for the quantitative reconstruction of past water-table variations in peatlands, and have been applied to research questions in palaeoclimatology, peatland ecohydrology and archaeology. We analysed automatically-logged peatland water-table data from dipwells located in England, Wales and Finland and a suite of three year, one year and summer water-table statistics were calculated from each location. Surface moss samples were extracted from beside each dipwell and the testate amoebae community composition was determined. Two published transfer functions were applied to the testate-amoeba data for prediction of water-table depth (England and Europe). Our results show that estimated water-table depths based on the testate amoeba community reflect directional changes, but that they are poor representations of the real mean or median water-table magnitudes for the study sites. We suggest that although testate amoeba-based reconstructions can be used to identify past shifts in peat hydrology, they cannot currently be used to establish precise hydrological baselines such as those needed to inform management and restoration of peatlands. One approach to avoid confusion with contemporary water-table determinations is to use residuals or standardised values for peatland water-table reconstructions. We contend that our test of transfer functions against independent instrumental data sets may be more powerful than relying on statistical testing alone

    Evaluating the use of testate amoeba for palaeohydrological reconstruction in permafrost peatlands

    Get PDF
    The melting of high-latitude permafrost peatlands is a major concern due to a potential positive feedback on global climate change. We examine the ecology of testate amoebae in permafrost peatlands, based on sites in Sweden (~ 200 km north of the Arctic Circle). Multivariate statistical analysis confirms that water-table depth and moisture content are the dominant controls on the distribution of testate amoebae, corroborating the results from studies in mid-latitude peatlands. We present a new testate amoeba-based water table transfer function and thoroughly test it for the effects of spatial autocorrelation, clustered sampling design and uneven sampling gradients. We find that the transfer function has good predictive power; the best-performing model is based on tolerance-downweighted weighted averaging with inverse deshrinking (performance statistics with leave-one-out cross validation: R2 = 0.87, RMSEP = 5.25 cm). The new transfer function was applied to a short core from Stordalen mire, and reveals a major shift in peatland ecohydrology coincident with the onset of the Little Ice Age (c. AD 1400). We also applied the model to an independent contemporary dataset from Stordalen and find that it outperforms predictions based on other published transfer functions. The new transfer function will enable palaeohydrological reconstruction from permafrost peatlands in Northern Europe, thereby permitting greatly improved understanding of the long-term ecohydrological dynamics of these important carbon stores as well as their responses to recent climate change

    An agenda for integrated system-wide interdisciplinary agri-food research

    Get PDF
    © 2017 The Author(s)This paper outlines the development of an integrated interdisciplinary approach to agri-food research, designed to address the ‘grand challenge’ of global food security. Rather than meeting this challenge by working in separate domains or via single-disciplinary perspectives, we chart the development of a system-wide approach to the food supply chain. In this approach, social and environmental questions are simultaneously addressed. Firstly, we provide a holistic model of the agri-food system, which depicts the processes involved, the principal inputs and outputs, the actors and the external influences, emphasising the system’s interactions, feedbacks and complexities. Secondly, we show how this model necessitates a research programme that includes the study of land-use, crop production and protection, food processing, storage and distribution, retailing and consumption, nutrition and public health. Acknowledging the methodological and epistemological challenges involved in developing this approach, we propose two specific ways forward. Firstly, we propose a method for analysing and modelling agri-food systems in their totality, which enables the complexity to be reduced to essential components of the whole system to allow tractable quantitative analysis using LCA and related methods. This initial analysis allows for more detailed quantification of total system resource efficiency, environmental impact and waste. Secondly, we propose a method to analyse the ethical, legal and political tensions that characterise such systems via the use of deliberative fora. We conclude by proposing an agenda for agri-food research which combines these two approaches into a rational programme for identifying, testing and implementing the new agri-technologies and agri-food policies, advocating the critical application of nexus thinking to meet the global food security challenge

    The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

    Get PDF
    Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses

    Towards Attribute-Based Encryption for RAMs from LWE: Sub-linear Decryption, and More

    Get PDF
    Attribute based encryption (ABE) is an advanced encryption system with a built-in mechanism to generate keys associated with functions which in turn provide restricted access to encrypted data. Most of the known candidates of attribute based encryption model the functions as circuits. This results in significant efficiency bottlenecks, especially in the setting where the function associated with the ABE key is represented by a random access machine (RAM) and a database, with the runtime of the RAM program being sublinear in the database size. In this work we study the notion of attribute based encryption for random access machines (RAMs), introduced in the work of Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich (Crypto 2013). We present a construction of attribute based encryption for RAMs satisfying sublinear decryption complexity assuming learning with errors; this is the first construction based on standard assumptions. Previously, Goldwasser et al. achieved this result based on non-falsifiable knowledge assumptions. We also consider a dual notion of ABE for RAMs, where the database is in the ciphertext and we show how to achieve this dual notion, albeit with large attribute keys, also based on learning with errors

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys
    corecore