370 research outputs found

    CO abundance variations in the Orion molecular cloud

    Get PDF
    Infrared stellar photometry from the Two Micron All-Sky Survey (2MASS) and spectral line imaging observations of 12CO and 13CO J = 1-0 line emission from the Five College Radio Astronomy Observatory (FCRAO) 14-m telescope are analysed to assess the variation of the CO abundance with physical conditions throughout the Orion A and Orion B molecular clouds. Three distinct Av regimes are identified in which the ratio between the 13CO column density and visual extinction changes corresponding to the photon-dominated envelope, the strongly self-shielded interior, and the cold, dense volumes of the clouds. Within the strongly self-shielded interior of the Orion A cloud, the 13CO abundance varies by 100 per cent with a peak value located near regions of enhanced star formation activity. The effect of CO depletion on to the ice mantles of dust grains is limited to regions with Av > 10 mag and gas temperatures less than ∼20 K as predicted by chemical models that consider thermal evaporation to desorb molecules from grain surfaces.Values of the molecular mass of each cloud are independently derived from the distributions of Av and 13CO column densities with a constant 13CO-to-H2 abundance over various extinction ranges. Within the strongly self-shielded interior of the cloud (Av> 3 mag), 13CO provides a reliable tracer of H2 mass with the exception of the cold, dense volumes where depletion is important. However, owing to its reduced abundance, 13CO does not trace the H2 mass that resides in the extended cloud envelope, which comprises 40-50 per cent of the molecular mass of each cloud. The implied CO luminosity to mass ratios, M/LCO, are 3.2 and 2.9 for Orion A and Orion B, respectively, which are comparable to the value (2.9), derived from γ-ray observations of the Orion region. Our results emphasize the need to consider local conditions when applying CO observations to derive H2 column densities. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.This work is supported by grants AST-0838222 and AST-1009049 from the National Science Foundation and a stipend from the Massachusetts Space Grant Consortium. CB is funded in part by the UK Science and Technology Facilities Council grant ST/J001627/1 (From Molecular Clouds to Exoplanets and the ERC grant ERC- 2011-StG 20101014 (LOCALSTAR, both held at the University of Exeter. This publication makes use of data products from the 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France

    Submarine slope degradation and aggradation and the stratigraphic evolution of channel-levee systems

    Get PDF
    Two seismic-scale submarine channel–levee systems exposed in the Karoo Basin, South Africa provide insights into slope conduit evolution. Component channel fills in a levee-confined channel system (Unit C) and an entrenched channel system (Unit D) follow common stacking patterns; initial horizontal stacking (lateral migration) is followed by vertical stacking (aggradation). This architecture is a response to an equilibrium profile shift from low accommodation (slope degradation, composite erosion surface formation, external levee development, sediment bypass) through at-grade conditions (horizontal stacking and widening) to high accommodation (slope aggradation, vertical stacking, internal levee development). This architecture is likely common to other channel–levee systems

    Mud-dominated basin margin progradation: processes and implications

    Get PDF
    The accretion of coarse-grained material at the shelf-edge rollover has been emphasized in studies of basin margin progradation, despite fine grained sediment (clay and silt) representing a volumetrically more significant component of subaqueous clinothems. The timing and processes of fine-grained sediment transport across the shelf and onto the slope remains an understudied facet of sedimentary basin stratigraphy. Three exhumed basin margin-scale clinothems of the Permian Waterford Formation, in the Karoo Basin, South Africa, offer outcrop examples of margin development through the accretion of mud during flooded shelf conditions. The progradation of wave/storm-influenced sandy shelf topset deposits over a thick mudstone succession and beyond a previously established sand-rich shelf-edge rollover suggests that some periods of basin margin progradation took place exclusively via dilute mud-rich gravity flows. Detailed outcrop and core study of offshore mudstones reveals a high content of organic debris and mica. Individual beds show normal and inverse grading, internal erosion surfaces and moderate to low bioturbation, reflecting relatively stressed conditions in frequently supplied outer shelf to upper slope regions. The estimated low gradient (<0.7º) of the Karoo Basin margin and prevailing wave/storm conditions facilitated prolonged suspension of fluid mud and transport across the shelf and beyond the shelf-edge rollover in sediment gravity flows. This study represents a rare example of mudstone-dominated shelf-edge rollover deposits documented at outcrop and core, and demonstrates how fine-grained sediment accretion can play a significant role in basin margin progradation. Conventional depositional models do not adequately account for progradation of basin margins in the absence of sand supply, which implies potential risks in the identification of shelf edge rollover positions and application of trajectory analysis in strongly progradational margins

    Anatomy of a mixed-influence shelf edge delta, Karoo Basin, South Africa

    Get PDF
    The position and process regime of paralic systems relative to the shelf edge rollover is a major control on sediment transfer into deep water. The depositional strike and dip variability of an exhumed Permian shelf edge succession has been studied in the Paardeberg Ridge, Karoo Basin. Siltstone-rich slope turbidites are overlain by 25–75 m-thick prodelta parasequences. These are truncated by a 30 m-thick sandstone-prone unit of tabular or convex-topped sandstones, interpreted as wave-modified mouth bars, cut by multiple irregular concave-upwards erosive surfaces overlain by sandstones, interpreted as distributary channels. The stratigraphic context, lithofacies and architecture are consistent with a mixed-influence shelf edge delta; the erosional base to the unit marks a basinwards shift in facies, consistent with a sequence boundary. Channels become thicker, wider, more erosive and incise into deeper-water facies downdip and correlate with sandstone-rich upper slope turbidites, all of which support the bypass of sand across the rollover. The overall progradational stacking pattern results in a stratigraphic decrease in channel dimensions. The results of this study suggest a predictable relationship between channel geometry, facies and position on the shelf-to-slope profile under a mixed wave and fluvial process regime

    Deep-water channel-lobe transition zone dynamics: Processes and depositional architecture, an example from the Karoo Basin, South Africa

    Get PDF
    Submarine channel-lobe transition zones separate well-defined channels from well-defined lobes and form morphologically complicated areas, commonly located at breaks in slope. These areas play a vital role in the transfer of sediment through deep-water systems. Extensive outcrop exposures in the Karoo Basin, South Africa, permit investigation of the depositional architecture and evolution of entirely exhumed dip transects of a channel-lobe transition zone for the first time. Furthermore, the excellent paleogeographic constraint allows correlation to genetically related updip channel-levee systems and downdip lobe deposits over 40 km, with strike control over 20 km. Unlike the single time slice afforded by modern systems, the Karoo example uniquely allows study of the temporal shifting of the channel-lobe transition zone and transfer into the stratigraphic record. Key lateral changes along the base of slope include the variation from an interfingering levee-lobe transition zone to a bypass-dominated channel-lobe transition zone over a width of 14 km. Key recognition criteria for channel-lobe transition zones in the ancient record include combinations of scours and megaflutes, composite erosional surfaces, mudstone clast/coarse-grained sediment lags, and remnants of depositional bed forms, such as sediment waves. Documented here in a single channel-lobe transition zone, these features are arranged in a zone of juxtaposed remnant erosional and depositional features. The zone reaches 6 km in length, formed by at least four stages of expansion/contraction or migration. Strike variations and changes in the dimensions of the channel-lobe transition zone through time are interpreted to be the result of physiographic changes and variations in flow dynamics across the base of slope. The dynamic nature of channel-lobe transition zones results in complicated and composite stratigraphy, with preservation potential generally low but increasing distally and laterally away from the mouth of the feeder channel system. Here, we present the first generic model to account for dynamic channel-lobe transition zone development, encompassing distinctive recognition criteria, fluctuations in the morphology and position of the zone, and the complex transfer into the sedimentary record

    Idiopathic toe-walking in children, adolescents and young adults: a matter of local or generalised stiffness?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density.</p> <p>Methods</p> <p>In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured.</p> <p>Results</p> <p>A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable.</p> <p>Conclusion</p> <p>ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered.</p

    HIV patients stable on ART retain evidence of a high CMV load but changes to Natural Killer cell phenotypes reflect both HIV and CMV

    Get PDF
    Background: Whilst ART corrects many effects of HIV disease, T cell populations retain features of accelerated immunological aging. Methods: Here we analyse phenotypic changes to natural killer (NK) cells in HIV patients who began ART with <200 CD4 T-cells/µl and maintained virological control for 12-17 years, compared with CMV seropositive and seronegative healthy control donors. Results: Humoral responses to CMV antigens (lysate, gB, IE-1) remain elevated in the patients (P <0.0001) despite the long duration of ART. Patient's NK cells responded poorly to K562 cells when assessed by CD107a and IFNγ, but this could not be attributed to CMV as responses were low in CMV-seronegative controls. Moreover HIV (and not CMV) increased expression of CD57 on CD56lo cells. Conclusions: Comparisons with published studies suggest that CMV accelerates age-related increases in CD57 expression but levels plateau by 60-70 years of age, so the effect of CMV disappears. In HIV patients the plateau is higher and perhaps reached sooner

    Long-term morphological and hormonal follow-up in a single unit on 115 patients with adrenal incidentalomas

    Get PDF
    We investigated the natural course of adrenal incidentalomas in 115 patients by means of a long-term endocrine and morphological (CT) follow-up protocol (median 4 year, range 1–7 year). At entry, we observed 61 subclinical hormonal alterations in 43 patients (mainly concerning the ACTH–cortisol axis), but confirmatory tests always excluded specific endocrine diseases. In all cases radiologic signs of benignity were present. Mean values of the hormones examined at last follow-up did not differ from those recorded at entry. However in individual patients several variations were observed. In particular, 57 endocrine alterations found in 43 patients (37.2%) were no longer confirmed at follow-up, while 35 new alterations in 31 patients (26.9%) appeared de novo. Only four alterations in three patients (2.6%) persisted. Confirmatory tests were always negative for specific endocrine diseases. No variation in mean mass size was found between values at entry (25.4±0.9 mm) and at follow-up (25.7±0.9 mm), although in 32 patients (27.8%) mass size actually increased, while in 24 patients (20.8%) it decreased. In no case were the variations in mass dimension associated with the appearance of radiological criteria of malignancy. Kaplan–Meier curves indicated that the cumulative risk for mass enlargement (65%) and for developing endocrine abnormalities (57%) over time was progressive up to 80 months and independent of haemodynamic and humoral basal characteristics. In conclusion, mass enlargement and the presence or occurrence over time of subclinical endocrine alterations are frequent and not correlated, can appear at any time, are not associated with any basal predictor and, finally, are not necessarily indicative of malignant transformation or of progression toward overt disease

    Measurement of the total antioxidant response using a novel automated method in subjects with nonalcoholic steatohepatitis

    Get PDF
    BACKGROUND: Oxidative stress, an increase in oxidants and/or a decrease in antioxidant capacity, is one of the potential biochemical mechanisms involved in the pathogenesis of nonalcoholic steatohepatitis. We aimed to investigate the total antioxidant response using a novel automated method in nonalcoholic steatohepatitis subjects. As a reciprocal measure, we also aimed to determine total peroxide level in the same plasma samples. METHODS: Twenty-two subjects with biopsy proven nonalcoholic steatohepatitis and 22 healthy controls were enrolled. Total antioxidant response and total peroxide level measurements were done in all participants. The ratio percentage of total peroxide level to total antioxidant response was regarded as oxidative stress index. RESULTS: Total antioxidant response of subjects with nonalcoholic steatohepatitis was significantly lower than controls (p < 0.05), while mean total peroxide level and mean oxidative stress index were higher (all p < 0.05). In subjects with nonalcoholic steatohepatitis, fibrosis score was significantly correlated with total peroxide level, total antioxidant response and oxidative stress index (p < 0.05, r = 0.607; p < 0.05, r = -0.506; p < 0.05, r = 0.728, respectively). However, no correlation was observed between necroimflamatory grade and those oxidative status parameters (all p > 0.05). CONCLUSION: Nonalcoholic steatohepatitis is associated with increased oxidant capacity, especially in the presence of liver fibrosis. The novel automated assay is a reliable and easily applicable method for total plasma antioxidant response measurement in nonalcoholic steatohepatitis

    Measurement of the W±Z boson pair-production cross section in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    published_or_final_versio
    corecore