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ABSTRACT: The accretion of coarse-grained material at the shelf-edge rollover has been 13 

emphasized in studies of basin margin progradation, despite fine grained sediment (clay and silt) 14 

representing a volumetrically more significant component of subaqueous clinothems. The timing and 15 

processes of fine-grained sediment transport across the shelf and onto the slope remains an 16 

understudied facet of sedimentary basin stratigraphy. Three exhumed basin margin-scale clinothems 17 

of the Permian Waterford Formation, in the Karoo Basin, South Africa, offer outcrop examples of 18 

margin development through the accretion of mud during flooded shelf conditions. The progradation 19 

of wave/storm-influenced sandy shelf topset deposits over a thick mudstone succession and beyond a 20 

previously established sand-rich shelf-edge rollover suggests that some periods of basin margin 21 

progradation took place exclusively via dilute mud-rich gravity flows. Detailed outcrop and core study 22 

of offshore mudstones reveals a high content of organic debris and mica. Individual beds show 23 

normal and inverse grading, internal erosion surfaces and moderate to low bioturbation, reflecting 24 

relatively stressed conditions in frequently supplied outer shelf to upper slope regions. The estimated 25 

low gradient (<0.7º) of the Karoo Basin margin and prevailing wave/storm conditions facilitated 26 

prolonged suspension of fluid mud and transport across the shelf and beyond the shelf-edge rollover 27 

in sediment gravity flows. This study represents a rare example of mudstone-dominated shelf-edge 28 

rollover deposits documented at outcrop and core, and demonstrates how fine-grained sediment 29 

accretion can play a significant role in basin margin progradation. Conventional depositional models 30 
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do not adequately account for progradation of basin margins in the absence of sand supply, which 31 

implies potential risks in the identification of shelf edge rollover positions and application of trajectory 32 

analysis in strongly progradational margins. 33 

 34 

INTRODUCTION 35 

Mud-rich clinothems are major components of continental shelves and the progradation of mud-36 

dominated deltas has been widely described in modern systems (e.g. Cattaneo et al. 2007; 37 

Slingerland et al. 2008). Shelf-edge progradation is commonly associated with the accretion of 38 

coarse-grained material (very fine sand and coarser) on and beyond the rollover (zone between the 39 

topset and foreset), when sedimentation in topsets is limited by low accommodation and/or high 40 

sediment supply (Morton and Suter 1996; Muto and Steel 2002; Steel and Olsen 2002; Steel et al. 41 

2003; Johannessen and Steel 2005; PorCbski and Steel 2006; Carvajal and Steel 2009; Carvajal et al. 42 

2009; Covault et al. 2009; Olariu and Steel 2009; Hubbard et al. 2010; Dixon et al. 2012a; 2012b). 43 

Typically, the recognition of sand-rich shelf-edge rollovers is used in outcrop and subsurface studies 44 

to define basin margin clinothems (e.g. Plink-Björklund and Steel 2002; Mellere et al. 2003; Pyles and 45 

Slatt 2007; Uroza and Steel 2008; Dixon et al. 2012a) (Fig. 1). The trajectory of multiple shelf-edge 46 

rollovers can be used to infer long-term relative sea-level changes (e.g. Steel and Olsen 2002; 47 

Helland-Hansen and Hampson 2009; Henriksen et al. 2009; 2011; Olariu et al. 2012). When trajectory 48 

is used in combination with the interpreted dominant shelf-edge process regime (Dixon et al. 2012b), 49 

the timing of coarse-grained sediment delivery from shelves to deep basins can be predicted. 50 

Mud-grade sediment is a volumetrically significant proportion of the total sediment transferred by 51 

rivers (e.g. Burgess and Hovius 1998), and a major sediment component in modern shelf construction 52 

(McCave 1972; Nittrouer et al. 1986; Kineke et al. 1996; Kuehl et al. 1996; Kuehl et al. 1997; Michels 53 

et al. 1998; Kineke et al. 2000; Liu et al. 2001; Bentley 2003; Hill et al. 2009). Consequently 54 

subaqueous deltas, shelf-edge rollovers, and basin margin clinothems are dominated by thick mud(-55 

stone)-rich packages (e.g. Damuth et al. 1988; Bohacs 1998; Driscoll and Karner 1999; Cattaneo et 56 

al. 2007; Liu et al. 2007; Slingerland et al. 2008; Bohacs et al. 2014; Patruno et al. 2015) (Fig. 1), 57 

despite the emphasis commonly being on their sand-rich components. In addition, oceanographic 58 

studies have documented the existence of high energy prograding mud-rich shelves (Rine and 59 
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Ginsburg 1985; Augustinus 1989; Allison and Nittrouer 1998; Allison and Neill 2003; Cattaneo et al. 60 

2003; Rotondo and Bentley 2003; Walsh et al. 2004; Ta et al. 2005).  61 

A re-examination of mud transport processes (Macquaker and Bohacs 2007; McAnally et al. 2007; 62 

Schieber et al. 2007; Schieber and Southard 2009; Schieber and Yawar 2009) and the mechanisms 63 

responsible for widespread distribution of mud along the shelf (Nemec 1995; Abbott 2000; Traykovski 64 

et al. 2000; Parsons et al. 2001; Dalrymple and Cummings 2005; Pattison 2005; Nakajima 2006; 65 

Macquaker et al. 2007; Varban and Plint 2008; Ichaso and Dalrymple 2009; Macquaker et al. 2010; 66 

Ghadeer and Macquaker 2011; Harazim and McIlroy 2015) have led to a major reappraisal of fine-67 

grained successions in ancient shelves and epicontinental seas (e.g. Soyinka and Slatt 2008; 68 

Bhattacharya and MacEachern 2009; Plint et al. 2009; MacKay and Dalrymple 2011; Plint et al. 2012; 69 

2014; Wilson and Schieber 2014). However, there remains a lack of detailed studies across ancient 70 

mudstone-rich shelf-edge rollover successions (type 4 clinothems of Steel et al. 2000), and the 71 

mechanism and timing for basin margin clinothem progradation under mud-dominated supply regimes 72 

are still poorly constrained. 73 

This study of the Permian Waterford Formation, Karoo Basin (South Africa), utilizes an established 74 

stratigraphic framework (Wild et al. 2009; Jones et al. 2013; 2015), but focuses specifically on 75 

documenting a particular style of mudstone-dominated basin margin progradation in two basin 76 

margin-scale clinothems. The combined outcrop and core dataset permits to i) recognize and provide 77 

a depositional model of the shelf-to-slope transition in fine grained successions; ii) to understand the 78 

processes responsible for the transport and deposition of outer shelf and upper slope mudstones; and 79 

iii) to consider and discuss the implications of basin margin growth in the absence of coarse-grained 80 

sediment delivery at the shelf edge.  81 

 82 

STUDY AREA AND DATASET 83 

The 5500-m-thick Karoo Supergroup in the SW Karoo Basin of South Africa comprises the Dwyka 84 

Group (Late Carboniferous to Early Permian glacial deposits), the Ecca Group (Permian clastic 85 

marine/marginal marine) and the Beaufort Group (Permo–Triassic fluvial sediments) (Veevers et al. 86 

1994; Johnson et al. 1997; Visser 1997; Rubidge et al. 2000; Cole and Whipplinger 2001) (Fig. 2). 87 

Subsidence during Ecca Group time was generated by a combination of dynamic topography related 88 

to subduction of the paleo-Pacific oceanic plate, and inherited basement structures (Visser and 89 
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Praekelt 1996; Pysklywec and Mitrovica 1999; Tankard et al. 2009), that led to the development of the 90 

Tanqua and Laingsburg depocenters. 91 

The Karoo Basin deep water succession (Wickens 1994; Hodgson et al. 2006; Flint et al. 2011) is 92 

overlain by upper slope and shelf deposits of the Waterford Formation (Wickens 1994) (Fig. 2), a 400 93 

m-thick mixed-influence deltaic succession (Wild et al. 2009; Oliveira et al. 2011; Jones et al. 2013). 94 

The complete vertical stratigraphic transition from slope channel-levee systems (Wild et al. 2005; 95 

Hodgson et al. 2011) to shelf deltas, in combination with extensive down-dip exposures, permits the 96 

geometry of the basin margin to be reconstructed, and the identification of successive basin margin 97 

clinothems and their shelf-edge rollover positions (Wild et al. 2009; Oliveira et al. 2011; Dixon et al. 98 

2012a; Jones et al. 2013; 2015). Recent improved constraints on the timing of sedimentation from U-99 

Pb volcanic ash dating (Fildani et al. 2007; Fildani et al. 2009; McKay et al. 2015) suggest deltaic 100 

deposition began slightly earlier in the Tanqua than in the Laingsburg depocenter. However, the 101 

correlation of time-equivalent units between both depocenters is not the objective of this paper.  102 

The dataset in the 6000 km2 study area (Fig. 2) includes 66 detailed logged sections (15 in Tanqua, 103 

51 in Laingsburg) and a 550 m fully cored research borehole (SL1), that collectively total nearly 21 km 104 

of measured thickness, with units walked out between logs to provide physical stratigraphic 105 

correlation. The outcrop dataset from both depocenters is displayed in >40 km-long correlation panels 106 

(Figs. 3, 4). Collection of unidirectional paleoflow measurements from ripple foresets and flute casts, 107 

and bidirectional measurements from groove marks and the crest-lines of symmetrical ripples indicate 108 

that the overall paleoflow was to the NE and E (030°-080°) such that the panels are sub-parallel to 109 

depositional dip, with landward to the west and south and basinward to the east and north. Panels in 110 

Laingsburg are about 6 km apart across depositional strike, providing three-dimensional control on 111 

sedimentological characteristics and depositional architecture for each clinothem (Jones et al. 2015).  112 

 113 

FACIES ANALYSIS 114 

The sedimentary facies scheme is largely based on previous studies (Wild et al. 2009; Oliveira et al. 115 

2011; Jones et al. 2013) and is presented in Table 1. The sand-dominated facies associations of the 116 

Waterford Formation topset deposits exhibit characteristics that are consistent with mixed wave- and 117 

river-influenced shoreline settings (Reineck and Singh 1973; Harms et al. 1975; 1982; McCubbin 118 

1982; Browning et al. 2006; Ainsworth et al. 2011). This work focusses on the range of facies and 119 
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facies associations that span from outer shelf through shelf-edge rollover to upper slope depositional 120 

settings (Table 1). Overall, the amount of Sedimentary structures that indicate river-dominance is less 121 

in Laingsburg than in Tanqua, and therefore shoreface nomenclature is used to interpreted the 122 

depositional environments in the Laingsburg area (Jones et al. 2013; 2015), but a delta-123 

front/shoreface nomenclature is maintained for the Tanqua area (Wild et al. 2009). 124 

 125 

CLINOTHEMS – UNITS OF BASIN MARGIN PROGRADATION 126 

The stratigraphic units of the lower Waterford Formation are interpreted as basin margin clinothems, 127 

the fundamental building blocks of basin margin development (e.g. Steel and Olsen 2002; Helland-128 

Hansen et al. 2012; Patruno et al. 2015) (Fig. 1). Wild et al. (2009) and Jones et al. (2013) recognized 129 

multiple 10-100 m-thick clinothems along depositional dip profiles (Figs. 3, 4), in Tanqua and 130 

Laingsburg respectively. The vertical profile, depositional setting and scale of these stratigraphic 131 

packages are consistent with deltaic parasequences as described by Van Wagoner et al. (1990). 132 

Constraining the complete topset, foreset and bottomset deposits for each individual clinothem is not 133 

always possible. However, the basinward thickening of parasequences, defined by regional mudstone 134 

units interpreted to contain the deepwater equivalent of flooding surfaces, can be recognized and 135 

used to define clinothems (Dixon et al. 2012b; Jones et al. 2015). The first abrupt or significant 136 

change in the gradient can be used to interpret the location of successive shelf edge rollovers 137 

(Southard and Stanley 1976), but the ‘apparent’ geometry of ancient shelf margins might be highly 138 

dependent on the choice of datum and the result of post-depositional factors, such as differential 139 

sand/mud compaction and accumulated error when measuring thicknesses in the field. This 140 

geometric criterion must be therefore used in combination with other observed features, which do not 141 

independently point the shelf edge position, but that in conjunction indicate abrupt changes in 142 

sedimentary facies and depositional architecture close to the shelf-edge rollover zone. These include 143 

(i) extensional deformation (growth faults), (ii) widespread bypass features (gullies) and (iii) 144 

progressive increase in sandstone turbidites beyond the rollover (see Jones et al. 2013).  145 

In the up-dip exposures, clinothem thickness decreases stratigraphically upward from ~50 m to ~25 m 146 

in Tanqua, and from ~100 m to ~20 m in Laingsburg (Table 2). The documented NE and E paleoflow 147 

direction in both the Tanqua and Laingsburg depocenters is consistent with a NW-SE orientation of 148 
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the reconstructed shelf margin, although with local irregularities and lateral variability as reported in 149 

the Laingsburg depocenter (Jones et al. 2015) (Fig. 5). 150 

 151 

STRATIGRAPHIC ARCHITECTURE 152 

Laingsburg depocenter 153 

The lower Waterford Formation in the Laingsburg area comprises eight regionally-correlated 154 

clinothems (Jones et al. 2015). The lower four units (WfC-1-4) show a progradational stacking pattern 155 

interpreted as a highstand systems tract (Jones et al., 2013). WfC 4 and 5 are separated by an 156 

interpreted regressive surface of marine erosion (type-2 sequence boundary, Fig. 4) (Jones et al. 157 

2013). Clinothems show an increasingly steep rising trajectory with the shelf-edge rollover of WfC 5 158 

positioned almost directly on top of the rollover of WfC 4 (Fig. 4) (Jones et al. 2015). WfC 5 159 

represents the final sand-dominated shoreface system established at the shelf-edge rollover, and with 160 

an overlying 5-10 m-thick basinward thickening mudstone is interpreted as a transgressive systems 161 

tract (TST) and associated maximum flooding surface (MFS) that marks the retreat of the system to 162 

an inner shelf position (Fig. 4). WfC 6 and 7 consist primarily of heterolithic shoreface/offshore 163 

transition (SOT) deposits with poorly developed amalgamated lower shoreface facies only observable 164 

in their proximal exposures (Figs. 5, 6, 7). The seaward pinchout of the sand-rich shoreface facies of 165 

WfC 6 is 10-15 km updip from the shelf-edge rollover position of WfC 5, and the shoreface component 166 

of WfC 7 is progradational relative to WfC 6 but also fines and pinches out to a minimum of 5 km 167 

landward of the shelf-edge rollover of WfC 5 (Figs. 5, 7). The basinward stepping of WfC 6 and 7 168 

suggests that the system returned to a progradational trend as part of the subsequent highstand 169 

systems tract. However, the lack of coarse-grained material in WfC 6 and 7 beyond the shelf-edge 170 

rollover position of WfC 5 in some areas along the shelf margin (Figs. 5) indicates that the sand-rich 171 

components of WfC 6 and 7 remained on the inner shelf (shelf-confined; Fig. 1). Correlations along 172 

the Zoutkloof area show that sand-rich shoreface facies associations of WfC 8 extend for 15 km 173 

beyond the last sand-defined shelf edge of WfC 5 (Jones et al. 2015) and well beyond the inner shelf 174 

sand-rich pinch-outs of WfC 6 and 7 (Fig. 7). Therefore, during WfC 6, 7 and lower WfC 8 the shelf-175 

edge rollover prograded ~15 km (distance from the lower sand-rich rollover position identified in WfC 176 

5 to the sand-rich shelf-edge rollover of WfC 8) through the accretion of mud under sea level 177 

highstand conditions. 178 
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 179 

Tanqua depocenter 180 

The stratigraphic architecture of the lower Waterford Formation clinothems (C1-C8, Fig. 3) in the 181 

Tanqua depocenter is similar to that described in Laingsburg but the correlation between both 182 

successions is not established due to the lack of absolute age control. Differences (Table 2) include 183 

thinner clinothems combined with lower estimated gradients (0.5° to 0.7°, using compacted 184 

thicknesses) (see also Wild et al. 2009), and a thinner underlying channelized slope succession (Wild 185 

et al. 2005; Hodgson et al. 2006), suggesting a lower-gradient margin and a shallower basin margin 186 

relief in the Tanqua depocenter.  187 

Clinothems C2–4 exhibit a strongly aggradational to progradational stacking pattern and rising 188 

shoreline and shelf edge rollover trajectory, interpreted as part of a highstand systems tract (Wild et 189 

al. 2009), culminating in the maximum regression point in C4-5, with the rollover located close to the 190 

SL1 locality (Fig. 3). The sandstone pinch-out of the overlying clinothem C5 is positioned slightly 191 

landward of the sand-rich rollover of C4, south of SL1-Bitterberg (T5), suggesting a turnaround to a 192 

retrogradational stacking pattern. This, together with an overlying regionally extensive mudstone is 193 

interpreted to be part of a transgressive systems tract (TST) and early HST, and contain an 194 

associated MFS, at which time the shoreline stepped back onto a more landward shelf position (Fig. 195 

3). 196 

Clinothem C6 consists of amalgamated organic-rich delta front/shoreface facies associations (Table 197 

1) that are only recognized in the most proximal exposures (T2-T3, Fig. 3). The sand-rich component 198 

of C6 fines and thins basinward, and pinches out between Vaalberg and Bitterberg (T4 and T5, Fig. 199 

3), i.e., before the established shelf-edge rollover position of C5. Clinothem C7 prograded over C6 200 

and its delta front/shoreface sandstones pinchout beyond the previous shelf-edge rollover position of 201 

C5, reaching the westernmost edge of the study area in Katjiesberg (T7, Fig. 3). The progradational 202 

stacking pattern of C6 and C7 is consistent with the lower part of a second highstand systems tract 203 

after the regional transgressive event in C5. The absence of sand-rich C6 deposits basinward of the 204 

rollover position of C5 is consistent with deltaic/shoreface sandstones confined in the inner shelf and 205 

with a mudstone-dominated shelf edge and upper slope. Sand-rich facies associations in C7 can be 206 

followed basinward for 10 km beyond the sand-rich rollover positions of C4 and C5 and well beyond 207 
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the sandstone pinch out of C6 (Fig. 3). This indicates that during C6 and early C7 time, the shelf-edge 208 

rollover also prograded through the accretion of mud under sea level highstand conditions. 209 

 210 

MUDSTONE-DOMINATED SHELF EDGE DEPOSITS 211 

Outcrop observations 212 

WfC 6 and 7 are well exposed in the Zoutkloof area of the Laingsburg depocenter (Fig. 6, see location 213 

in Fig. 4A). Detailed outcrop observations just above shoreface-offshore transition (SOT, Table 1) 214 

deposits of WfC 5 reveal an 8 m-thick fining-upward package overlain by a 33 m-thick coarsening- 215 

and thickening-upward package (Fig. 6). The lower package starts with highly bioturbated coarse 216 

siltstones, showing a distinctive mottled texture with an irregular distribution of sand grains within a 217 

silty matrix. Overlying these siltstones are multiple surfaces with associated iron-rich nodular 218 

horizons, interpreted to record condensed sections and are therefore included in the upper part of the 219 

TST associated with WfC 5 (Figs. 6, 7, Table 1). Just above the best developed of these surfaces, 220 

considered to be recording the maximum flooding surface, facies pass abruptly into darker, finer-221 

grained and laminated siltstones, rich in organics and mica. These thin beds feature mm-scale 222 

dominantly unidirectional to combined-flow tractional structures with little to no bioturbation, 223 

interpreted as the oldest most distal deposits of WfC 6 (Fig. 6). Thin beds alternate with diffusely 224 

bedded structureless fine siltstones, and become progressively coarser and cleaner up section, losing 225 

their organic content while retaining a low to moderate bioturbation index. An overlying pervasively 226 

bioturbated 1.2 m-thick package is interpreted to record the transgressive top of WfC 6. The overlying 227 

WfC 7 succession coarsens- and thickens-upward from sandstones with symmetrically rippled tops to 228 

thicker-bedded sandstones with hummocky cross-stratification (Table 1). The stacking pattern and 229 

facies characteristics of WfC 6 and 7 are consistent with an upward transition from offshore/distal 230 

prodelta mudstones deposited initially below storm wave base to progressively sandier and shallower 231 

wave-influenced deposits (Fig. 6, Table 1). The soft-sediment deformation features observed in WfC 7 232 

are interpreted to record delta front/shoreface collapse (Oliveira et al. 2011) (Fig. 7, Table 1). WfC 8 233 

starts with moderately-bioturbated and laminated prodeltaic thin beds, but records a more abrupt 234 

transition into sand-rich shoreface facies associations (Fig. 6).  235 

 236 

Core observations 237 



9 

 

Core observations of the SL1 research borehole (Wild et al. 2009) drilled close to the Bitterberg 238 

locality (T5, Figs. 3, 8) of the Tanqua depocenter allowed subtle variations in the characteristics of 239 

fine-grained deposits in the C6-C7 succession to be documented (Fig. 8). The stratigraphic control 240 

indicates that in the core, this mudstone-dominated package overlies the maximum flooding surface 241 

above C5, and captures deposition across the shelf-edge rollover (Fig. 3). Analysis included detailed 242 

(mm-scale) logging of the whole 40 m-thick C6-C7 package, with special attention to the stacking 243 

pattern and sedimentological features of thin beds to allow an accurate description and interpretation 244 

of processes (Fig. 8).  245 

Observations reveal the presence of mm to cm-scale organic and mica-rich laminated siltstone layers, 246 

interbedded with few bioturbated and/or structureless mudstones (Fig. 8). Parallel- and ripple-247 

laminated siltstones show normal and/or inverse grading, and a range of internal erosion and traction 248 

structures within a single bed, along with small-scale soft-sediment deformation (Fig. 8) towards the 249 

basal contact of the beds. Sedimentary structures, when observed, mostly include undulate bedding, 250 

starved current ripples and apparent planar lamination (Schieber et al. 2010). Some beds show a 251 

distinctive two-part organization with a clean, laminated silt-rich lower part, preserving primary 252 

structures and an erosive and/or loaded base (Fig. 8), overlain with a sharp contact by a finer and 253 

darker poorly sorted/bioturbated upper section, rich in mud clasts and containing mica and plant 254 

debris (Fig. 9). Bioturbation intensity generally ranges from moderate to low (Bioturbation Index 0-2) 255 

(e.g. Taylor et al. 2003). Evidence of combined-flow indicators can be inferred from low 256 

angle/undulated cross laminations in the coarser beds of these fine-grained intervals (Fig. 8).  257 

 258 

Characterization of mudstones at the shelf-edge rollover 259 

The outcrop examples of Laingsburg WfC 6 and 7 in the Zoutkloof panel (Fig. 7) combined with the 260 

core observations of Tanqua C6 and C7 in the SL1 well (Fig. 8), offer the opportunity to study two 261 

unusual examples of fine-grained shelf to slope transitions. These mudstone thin beds are grouped 262 

according to their interpreted sedimentary processes and inferred position along the depositional 263 

profile (Types A-D; Fig. 10).  264 

Type-A beds are mainly composed of coarse siltstone with sharp base and top, and combined- to 265 

unidirectional-flow tractional structures. Type-A beds dominate the upper (and more proximal) parts of 266 

mudstone-dominated clinothems in WfC 6-7 in Zoutkloof (Fig. 6) and in C6-7 in the SL1 well (Fig. 8), 267 
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and are also commonly seen interbedded with wave-dominated sand-rich thin beds in shoreface-268 

offshore transition deposits (Fig. 6, Table 1). These beds (0.5-2 cm-thick) are interpreted to record the 269 

most proximal expression of dilute silt-rich gravity-flows in distal prodelta/outer shelf settings, 270 

sometimes under the effect of storm/waves (undulate cross laminations observed might be the 271 

product of storm reworking), and with the sharp bed tops indicative of basinward bypass (Stevenson 272 

et al. 2015) of finer particles (Fig. 10). 273 

Type-B beds have sharp, erosive/loaded bases with a distinctive bipartite character that comprises a 274 

lower (0.5-2 cm-thick) well-sorted silt-rich, parallel to low angle laminated part, overlain by a 275 

mud/organic-rich poorly-sorted upper section (1-2 cm-thick; Fig. 10). The poorly sorted part commonly 276 

drapes a scour surface (Fig. 9,). Type-B beds are interpreted to record a longitudinal change in flow 277 

properties within the same event, associated with flow acceleration due to sediment entrainment 278 

and/or gradient increase at the shelf edge. This flow transformation is recorded in the sharp intra-bed 279 

facies change from the clean and well-sorted laminated basal part to the poorly sorted argillaceous 280 

part overlying an erosion surface. The basal part is interpreted as the deposit of a waxing underflow, 281 

and the upper part as a muddy debrite, with the erosion surface between suggesting a phase of 282 

basinward sediment bypass. Type-B beds dominate intermediate sections of the studied intervals 283 

(Fig. 8).  284 

Type-C beds form 2-4 cm-thick inverse-graded beds with a gradational base, relatively sharp, 285 

mudstone clast-rich tops sometimes overlain by a finer and moderately bioturbated normally graded 286 

upper part, and a general absence of bioturbation (Fig. 8). Their character suggests an 287 

accelerating/waxing flow origin and entrainment of seafloor material and/or lofted mud-size particles 288 

from the turbid ambient fluid (Fig. 10). The sharp tops suggest basinward sediment bypass. Type-C 289 

beds are less common than other bed types, and occur in the lower parts of the studied sections, 290 

suggesting deposition occurred where gradient progressively increased towards the upper slope (Fig. 291 

10). 292 

Type-D beds are generally 0.5-7 cm-thick, sharp-based and normally graded with traction structures 293 

and grade into well-developed mud-rich tops with moderate bioturbation (B.I. 2) and abundant organic 294 

debris and mica. They are interpreted to record deposition of the dilute part of a waning sediment 295 

gravity flow across the shelf-to-slope transition (Fig. 10). Although Type-D beds are found throughout 296 

the entire succession, they are more common in the lower part of the studied sections (Fig. 8), 297 
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suggesting they record deposition in a more distal setting under relatively quieter conditions. Locally, 298 

Type-C and Type-D beds combine to form inverse- to normally-graded beds, which has been used as 299 

diagnostic criteria for deposition from hyperpycnal flows (Mulder et al. 2003; Plink-Björklund and Steel 300 

2004; Zavala et al. 2007).  301 

   302 

DISCUSSION 303 

Implications for basin margin analysis 304 

Large-scale correlation within the lower Waterford Formation demonstrates that some periods of 305 

basin margin progradation were exclusively through the accretion of mud (clay and silt) across the 306 

shelf-edge rollover and onto the upper slope. In the Laingsburg depocenter, during WfC 6 and 7 and 307 

early WfC 8, shelf margin accretion and progradation took place in the absence of coarse-grained 308 

sediment supply under flooded shelf conditions. Sufficient accommodation and shallow water depths 309 

led to the development of low-amplitude (5-30 m-thick) mud-rich and shelf-confined delta clinothems 310 

(Figs. 1, 6). However, at this time the shelf-edge rollover prograded a minimum of 15 kilometers via 311 

deposition of mud-rich flows, down dip from time equivalent shelf-confined sand-rich delta 312 

fronts/shorefaces (Figs. 6, 10). During periods of high relative sea level, although the sand-rich 313 

component of deltas mostly accumulates on the inner shelf (e.g. PorCbski and Steel 2006), the shelf 314 

edge is still present as a physiographic feature, but is muddier and more attenuated (Olariu and Steel 315 

2009). In the absence of absolute age control in the Karoo Basin the rates of aggradation and 316 

progradation cannot be constrained. These results contrast with ‘classic’ seismic sequence 317 

stratigraphy, that was developed to understand and predict the spatial and temporal distribution of 318 

potential reservoir sand bodies in relation to accommodation history of basin margins (Vail et al. 1977; 319 

Posamentier et al. 1988; Posamentier and Vail 1988; Van Wagoner et al. 1990). Therefore, 320 

depositional models have paid little attention to the large volume and processes of fine-grained 321 

sediment delivery to build the shelf prism, and instead emphasize the timing of sand transfer to the 322 

slope and basin floor, as a response to relative sea level change (e.g. Helland-Hansen and Hampson 323 

2009). During periods of low relative sea level, the shelf margin position tends to move basinward, but 324 

part or all of the shelf may become exposed subaerially, and the shelf and shelf-edge rollover areas 325 

will be subject to sediment bypass and local degradation (Ross et al. 1994; Hadler-Jacobsen et al. 326 

2005; Ryan et al. 2009).  327 
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 328 

Muddy shelf-edge rollovers and clinoform trajectories 329 

Most studies of ancient clinothems and shelf margins focus on the process regime and architecture of 330 

sand-rich deposits to support shelf-edge rollover identification (e.g. Plink-Björklund and Steel 2002; 331 

Mellere et al. 2003; Pyles and Slatt 2007; Uroza and Steel 2008; Hubbard et al. 2010; Dixon et al. 332 

2012a; Jones et al. 2013). The present study demonstrates that shelf-edge rollovers are not always 333 

defined by sand-rich deposits, yet can still be identified at outcrop based on geometry and detailed 334 

sedimentology. Under flooded shelf conditions, the mud-rich extended bottomset component of 335 

deltaic clinothems may reach the upper slope, to build fine-grained shelf-edge rollovers and basin 336 

margin clinothem foresets that prograde basinward. This occurs when the sand-rich topset and 337 

foreset component of delta-scale clinothems is confined to the inner part of the shelf (Fig. 1). Analysis 338 

of the lower Waterford Formation clinothems highlights a potential limitation of shelf-edge trajectory 339 

analysis; delivery systems are observed to change laterally from shelf-confined to shelf-edge (e.g. 340 

Sanchez et al. 2012; Jones et al. 2015) (Figs. 1, 11), however the clinothem trajectory may remain 341 

consistently progradational. An example of this can be found in the Upper Cretaceous Fox Hills 342 

Formation (Wyoming, USA), where, although most of prograding clinothems are dominated by sand, 343 

some examples have shelf edge rollovers dominated by mud (clinothems C06, C07 and C12, Olariu 344 

et al. 2012). The expression of shelf-edge rollovers and parasequence boundaries of muddy 345 

clinothems are challenging to identify, and the time they represent is difficult to constrain (Bohacs 346 

1998). This is particularly true in subsurface studies, due to the complex recognition of impedance 347 

contrasts (Miller et al. 2013). As in the Waterford Formation, under relative sea level highstand 348 

conditions, the delta top sand-rich components of some parasequences can be confined in inner shelf 349 

positions, remaining below seismic resolution, but the shelf margin can still prograde through the 350 

accretion of mud (Fig. 11). The position of highstand deposits relative to the shelf margin can be 351 

problematic in exploration studies, because muddy parasequences may have laterally extensive, 352 

comparatively sand-dominated topsets (Figs. 5, 11) and therefore require the presence of regional, 353 

transgressive mudstones to develop effective seals.  354 

 355 

Sediment transport on a high-energy muddy shelf 356 
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The integration of outcrop data with detailed core analysis shows that mud-dominated shelf margin 357 

progradation was the result of deposition of muddy and organic-rich sediment gravity flows. The 358 

significant amount of plant debris and mica in some beds indicates a continental origin of mud, 359 

possibly from hyperpycnal river plumes (Mulder and Alexander 2001; Mulder et al. 2003; Bouma and 360 

Scott 2004; Plink-Björklund and Steel 2004; Zavala et al. 2006a; 2006b; Bhattacharya and 361 

MacEachern 2009; Zavala et al. 2012). However, the common occurrence of wave/storm processes 362 

that influenced the deposition of sand-rich deposits in shoreface and shoreface-offshore transition 363 

settings (Table 1) (Jones et al. 2015), combined with a relatively low gradient (Table 2), is not 364 

consistent with the characteristics of margins where fine-grained sedimentation is associated with 365 

recurrent and sustained hyperpycnal discharges to the shelf edge (Mutti et al. 1996; Bentley 2003; 366 

Mulder et al. 2003; Mutti et al. 2003; Plink-Björklund and Steel 2004; Friedrichs and Scully 2007). 367 

Wave/storm processes are therefore advocated to be the main mechanism that kept unconsolidated 368 

silt and flocculated clay fraction in suspension, or re-suspended (e.g. Traykovski et al. 2000; Pattison 369 

2008; Macquaker et al. 2010). Mud particles that accumulate as floccules or organo-mineralic 370 

aggregates (Plint 2014) act hydrodynamically as silt or sand grains (Schieber et al. 2007). This is 371 

supported by the ubiquity of tractional structures observed within the thin mudstone beds. Wave 372 

enhancement of gravity flows or storm re-suspension of previously-deposited sediment can occur 373 

before, during, or shortly after river flood events (Ogston et al. 2000; Traykovski et al. 2000; Fan et al. 374 

2004), but the process is more commonly identified in systems that are not able to deliver significant 375 

amounts of new mud to the shelf (Bentley et al. 2006). The paucity of combined-flow indicators in bed 376 

Types B to D (Fig. 10) contrasts with their presence in Type A beds and their presence in the 377 

shoreface and shoreface-offshore transition sandy counterparts (Fig. 6 and Table 1). This is 378 

interpreted to indicate that, although waves/storms played an important role keeping mud in 379 

suspension across the shelf, deposition of the finest particles in the studied sections took place mostly 380 

below storm wave base as sediment gravity flows (e.g. Pattison 2005). Erosive and sharp boundaries 381 

within beds, and internal scours draped by poorly-sorted mudstones suggest sediment bypass and 382 

downslope transformation from waxing to waning gravity-driven flows. This, together with the low 383 

bioturbation intensity and diversity within the thin, silty beds, reflects environmental stresses and high 384 

sedimentation rates in outer shelf to upper slope settings of mud-dominated clinoforms.  385 

 386 
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CONCLUSIONS 387 

Three parasequences from exhumed and well-constrained basin margin clinothems of the Permian 388 

Waterford Formation, in adjacent depocenters of the Karoo Basin (South Africa), provide the first 389 

examples of mudstone-dominated shelf-edge rollover deposits documented in outcrop and core. This 390 

dataset has allowed the timing and processes of fine-grained sediment transport across the shelf and 391 

onto the slope to be assessed. The study demonstrates that some periods of shelf-edge progradation 392 

occurred through the accretion of mud when the sand-rich part of wave-influenced deltas was 393 

positioned on the inner shelf. Detailed analysis of offshore mudstones suggests that recurrent supply 394 

to outer shelf and upper slope regions was by micaceous and organic-rich fluid mud that was kept in 395 

suspension or re-suspended from inner shelf positions during storms and transported across the low 396 

gradient shelf as dilute silt-rich gravity flows. Thin bed characteristics at the shelf-edge rollover and 397 

upper slope include soft-sediment deformation, evidence of sediment bypass including sharp 398 

contacts, internal erosions and traction structures and a subtle downdip facies changes within low 399 

density, silty turbidites. This work demonstrates that processes responsible for the transport and 400 

deposition of fine-grained material across and beyond the shelf edge play a fundamental role in basin 401 

margin development. The documentation of mud-rich shelf to slope transitions is significant for 402 

outcrop and subsurface investigations, because clinothems are not always defined by sand-rich shelf-403 

edge rollovers, and significant basin margin progradation can also occur in the absence of coarse-404 

grained sediment supply. This implies potential risks in the identification of shelf-edge rollover 405 

positions from presence of sand alone, and in the use of trajectory analysis to interpret relative sea-406 

level changes and to predict down dip sand supply.  407 
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Figure 2: Map and general stratigraphy of the SW Karoo Basin showing the Waterford Formation 809 

outcrop belt and the location of sedimentary logs and correlation panels in the Tanqua and 810 

Laingsburg depocenters. Note that the stratigraphic intervals studied in the two depocenters are not 811 

correlated. Stratigraphy modified from Flint et al. (2011).  812 

 813 
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through time in the Laingsburg depocenter. Note that during WfC 6 and WfC 7 the position of the 830 

sand pinchout is not coincident with the interpreted location of the shelf edge rollover. 831 
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Figure 6: Representative sedimentary log from the Faberskraal farm locality (Z10, see location in 833 

Figure 4A), showing a lower fining-upward unit with bioturbated and nodular siltstones included in the 834 

TST associated with WfC 5, followed by an overall coarsening and thickening-up succession (WfC 6-835 
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Figure 7: Detailed view of the correlation along the Zoutkloof area, showing progradation during WfC 839 
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about 15 km beyond the pre-established sand-dominated shelf-edge rollover of WfC 5. 845 
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Figure 8: General stratigraphic section of the SL1 research borehole, in the Tanqua depocenter, with 847 

detailed sketches/photographs of key mudstone beds (1-6) along C6 and C7. Note the vertical scale 848 

of the logs is in centimeters. Cycles in the well log are based on the recognition of flooding surfaces in 849 

the core (Wild et al. 2009). VSH = Shale volume from Gamma Ray log. 850 
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Figure 9: Enlarged view of a polished outcrop sample of a typical bi-partite (Type B) thin bed. Note the 852 

internal complexity of mud-rich thin beds and the difficulty to recognize their subdivisions in outcrop 853 

due to their small-scale expression. 854 

 855 

Figure 10: Cartoon showing the interpreted spatial distribution of dilute gravity flow processes and 856 

deposits across a fine-grained shelf-edge rollover associated with storm-dominated shelves. The 857 

position of the defined bed types along the depositional profile is extrapolated from their stratigraphic 858 

distribution. 859 
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Figure 11: Sketch of shelf-edge rollover areas based in the Waterford Formation stacked basin 861 

margin clinothems, with temporal flooded shelf conditions, showing the complexity in rollover 862 
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identification and potential risks of clinoform trajectory analysis based on identification of sand-rich 863 
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Table 1. Summary of sedimentary facies and facies associations found from the shelf to upper slope 867 

of the lower Waterford Fm. based on previous works (Wild et al. 2009; Oliveira et al. 2011; Jones et 868 

al. 2013; 2015)  869 
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Table 2. Clinoform thickness and slope variability in the Tanqua and Laingsburg depocenters. 871 

Estimated gradients and trajectories are from compacted thickness measurements (see also Wild et 872 

al. 2009).  873 
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Gradient (deg)
Max Min Min (30 km)

WfC1 163.4 23.6 0.712 muddy flat river

WfC2 145.5 31.2 0.713 sandy flat-rising wave

WfC3 92 34 0.700 mud>sand flat-rising river/wave

WfC4 124 16.4 0.570 sandy rising wave

WfC5 58 10 0.531 sandy rising wave

WfC6 37 6.8 0.552 muddy flat-falling river

WfC7 38 7 0.531 muddy flat-falling river

WfC8 23 6.04 0.513 sandy? falling river

Gradient (deg)
Max Min Min (30 km)

C1 45 21 0.435 muddy flat river

C2 52 17 0.512 sandy flat-rising river/wave

C3 44 31 0.504 sand>mud rising river/wave

C4 54 32 0.439 mud>sand rising river

C5 32 13 0.455 mud>sand rising river/tide

C6 15 10 0.455 muddy flat-falling river

C7 19 9.5 0.458 muddy flat-falling river

C8 14 7 0.474 sand>mud flat-rising river

TANQUA CLINOFORMS

Cycle
Thickness (m) Slope 

deposits
Rollover 
trajectory

Dominant 
process

LAINGSBURG CLINOFORMS

Cycle
Thickness (m) Slope 

deposits
Rollover 
trajectory

Dominant 
process

Table 2 
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