10 research outputs found
Sinuosity-driven hyporheic exchange in meandering rivers
A model for the evaluation of the intra-meander hyporheic exchange fluxes is presented. The method relies on a physically-based morphodynamic model to predict the characteristics of the flow field in a meandering river and the temporal evolution of its planimetry. The hyporheic fluxes induced at the meander scale by the river sinuosity can therefore be computed. The application of the model to a simulated case has shown the fundamental role of the river planimetry on the hyporheic exchange pattern at the meander scale, and its influence on the long-term evolution of the hyporheic exchang
Reduction of the hyporheic zone volume due to the stream-aquifer interaction
Pore water in stream sediments is continuously exchanged with the surface water from the overlying stream. This exchange of water and solutes that occurs across the stream-sediment interface plays an important role for fluvial ecology because of the unique biochemical conditions, rich biodiversity, and high rates of metabolism. While many studies have observed the extent of the hyporheic zone to be modified by changes in the level of the groundwater table, the actual importance of this interaction is still difficult to quantify. Here, we focus on the case of bedform induced hyporheic exchange to show how the the volume of hyporheic sediments that receive water from the stream is significantly reduced by the upwelling of subsurface water. A simple scaling relationship for the assessment of maximum depth of the hyporheic zone is proposed by relating hyporheic flow to the groundwater discharge in an aquifer with given hydraulic properties and head difference between the stream and the aquife
Intra-meander hyporheic flow in alluvial rivers
Several geomorphological fluvial features are able to induce hyporheic exchange between the rivers and the alluvial sediments. However, while the small-scale exchange induced by bed forms has been thoroughly investigated, the role of the larger features remains poorly understood. Here, we focus on the hyporheic flows driven by the channel sinuosity in the intrameander zone. A physically based model is adopted to simulate the morphodynamic evolution of three different meandering rivers, from the first stages of the meander evolution until the incipient meander cutoff. For each stage, the sinuosity- driven intrameander hyporheic flow is computed. In this way, the hyporheic flow field, the fluxes exchanged with the river, and the residence times are described during the whole meander evolution. The main result concerns the existence of a remarkable zonation induced by the flow field in the intrameander zone. The more the meander evolves, the more the zonation becomes pronounced, and the probability distribution of the residence times shows a bimodal shape with an intermediate power law behavior. Some general rules governing the typical timescales of the intrameander hyporheic flow and the mean exchanged flux are also deduce
Methods of Controlling Invasive Fungal Infections Using CD8+ T Cells
Invasive fungal infections (IFIs) cause high rates of morbidity and mortality in immunocompromised patients. Pattern-recognition receptors present on the surfaces of innate immune cells recognize fungal pathogens and activate the first line of defense against fungal infection. The second line of defense is the adaptive immune system which involves mainly CD4+ T cells, while CD8+ T cells also play a role. CD8+ T cell-based vaccines designed to prevent IFIs are currently being investigated in clinical trials, their use could play an especially important role in acquired immune deficiency syndrome patients. So far, none of the vaccines used to treat IFI have been approved by the FDA. Here, we review current and future antifungal immunotherapy strategies involving CD8+ T cells. We highlight recent advances in the use of T cells engineered using a Sleeping Beauty vector to treat IFIs. Recent clinical trials using chimeric antigen receptor (CAR) T-cell therapy to treat patients with leukemia have shown very promising results. We hypothesized that CAR T cells could also be used to control IFI. Therefore, we designed a CAR that targets β-glucan, a sugar molecule found in most of the fungal cell walls, using the extracellular domain of Dectin-1, which binds to β-glucan. Mice treated with D-CAR+ T cells displayed reductions in hyphal growth of Aspergillus compared to the untreated group. Patients suffering from IFIs due to primary immunodeficiency, secondary immunodeficiency (e.g., HIV), or hematopoietic transplant patients may benefit from bioengineered CAR T cell therapy