127 research outputs found

    Transverse Momentum Distributions of Identified Particles in p-Pb Collisions at sNN=5.02 TeV\mathrm{\sqrt{s_{NN}} = 5.02\ TeV}

    Full text link
    Transverse momentum (pTp_{\mathrm{T}}) distributions of identified hadrons produced in p-Pb collisions at sNN=5.02 TeV\mathrm{\sqrt{s_{NN}} = 5.02\ TeV} have been measured at mid-rapidity (0 <yCMS<< y_{\mathrm{CMS}} < 0.5) by ALICE. Particle tracks are reconstructed using the central barrel detectors. Particle identification is performed via specific energy loss, time-of-flight or their characteristic decay topology over a wide transverse momentum range (0 GeV/c up to 8 GeV/c). Spectral shapes and particle ratios are measured in six multiplicity classes. They are compared with several model calculations and results from Pb-Pb collisions at sNN=2.76 TeV\mathrm{\sqrt{s_{NN}} = 2.76\ TeV} and pp collisions at sNN=7 TeV\mathrm{\sqrt{s_{NN}} = 7\ TeV} at the LHC. The results are discussed with respect to possible collective effects in p--Pb collisions.Comment: 4 pages, 4 figures, Proceedings of the Strangeness in Quark Matter Conference (SQM 2013), 22nd - 27th July 2013, published by the Open Access Journal of Physics: Conference Series (JPCS), in the IOP conference serie

    Observation of the hyperfine transition in lithium-like Bismuth 209Bi80+^{209}\text{Bi}^{80+}: Towards a test of QED in strong magnetic fields

    Full text link
    We performed a laser spectroscopic determination of the 2s2s hyperfine splitting (HFS) of Li-like 209Bi80+^{209}\text{Bi}^{80+} and repeated the measurement of the 1s1s HFS of H-like 209Bi82+^{209}\text{Bi}^{82+}. Both ion species were subsequently stored in the Experimental Storage Ring at the GSI Helmholtzzentrum f\"ur Schwerionenforschung Darmstadt and cooled with an electron cooler at a velocity of 0.71c\approx 0.71\,c. Pulsed laser excitation of the M1M1 hyperfine-transition was performed in anticollinear and collinear geometry for Bi82+\text{Bi}^{82+} and Bi80+\text{Bi}^{80+}, respectively, and observed by fluorescence detection. We obtain ΔE(1s)=5086.3(11)meV\Delta E^{(1s)}= 5086.3(11)\,\textrm{meV} for Bi82+\text{Bi}^{82+}, different from the literature value, and ΔE(2s)=797.50(18)meV\Delta E^{(2s)}= 797.50(18)\,\textrm{meV} for Bi80+\text{Bi}^{80+}. These values provide experimental evidence that a specific difference between the two splitting energies can be used to test QED calculations in the strongest static magnetic fields available in the laboratory independent of nuclear structure effects. The experimental result is in excellent agreement with the theoretical prediction and confirms the sum of the Dirac term and the relativistic interelectronic-interaction correction at a level of 0.5% confirming the importance of accounting for the Breit interaction.Comment: 5 pages, 2 figure

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    The elliptic flow, v(2), of muons from heavy-flavour hadron decays at forward rapidity (2.5 <y <4) is measured in Pb-Pb collisions at root s(NN)= 2.76TeVwith the ALICE detector at the LHC. The scalar product, two- and four-particle Q cumulants and Lee-Yang zeros methods are used. The dependence of the v(2) of muons from heavy-flavour hadron decays on the collision centrality, in the range 0-40%, and on transverse momentum, p(T), is studied in the interval 3 <p(T)<10 GeV/c. A positive v(2) is observed with the scalar product and two-particle Q cumulants in semi-central collisions (10-20% and 20-40% centrality classes) for the p(T) interval from 3 to about 5GeV/c with a significance larger than 3 sigma, based on the combination of statistical and systematic uncertainties. The v(2) magnitude tends to decrease towards more central collisions and with increasing pT. It becomes compatible with zero in the interval 6 <p(T)<10 GeV/c. The results are compared to models describing the interaction of heavy quarks and open heavy-flavour hadrons with the high-density medium formed in high-energy heavy-ion collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe

    Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at root s=13 TeV

    Get PDF
    The pseudorapidity (eta) and transverse-momentum (p(T)) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy root s = 13 TeV. The pseudorapidity distribution in vertical bar eta vertical bar <1.8 is reported for inelastic events and for events with at least one charged particle in vertical bar eta vertical bar <1. The pseudorapidity density of charged particles produced in the pseudorapidity region vertical bar eta vertical bar <0.5 is 5.31 +/- 0.18 and 6.46 +/- 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 <p(T) <20 GeV/c and vertical bar eta vertical bar <0.8 for events with at least one charged particle in vertical bar eta vertical bar <1. The evolution of the transverse momentum spectra of charged particles is also investigated as a function of event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Production of identified particles in p–Pb collisions at √sNN = 5.02 TeV measured with ALICE

    No full text
    Transverse momentum distributions of identified particles have been measured in several multiplicity classes in p-Pb collisions at sqrt(s_NN) = 5.02 TeV. This measurement can shed light on the understanding of possible collective effects in high multiplicity events. Furthermore p-Pb collisions bridge the charged multiplicity gap between pp and low multiplicity Pb&ndash;Pb collisions. Studying the particle production in this region can improve the understanding of the underlying production mechanisms. Particles are reconstructed with the central barrel detectors over a wide transverse momentum range (from 0 up to 15 GeV/c), exploiting different identification techniques. &nbsp; Primary charged particles (pions, kaons, protons, antiprotons, deuterons and anti-deuterons) are identified by their specific energy loss (dE/dx) and time-of-flight. Weakly decaying particles are identified by their characteristic decay topology. Particle-production yields, spectral shapes and particle ratios have been measured in several multiplicity classes. Comparisons with models and results obtained in Pb-Pb collisions at sqrt(s_NN) = 2.76 TeV and pp collisions at 7 TeV at the LHC will be presented.<br /
    corecore