9 research outputs found

    Plant Diversity Surpasses Plant Functional Groups and Plant Productivity as Driver of Soil Biota in the Long Term

    Get PDF
    One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments.We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time.Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning

    Technology and the Promise of Decentralization. Origins, Development, Patterns of Arguments

    No full text

    Millennial-scale variability in south-east Australian hydroclimate between 30,000 and 10,000 years ago

    No full text

    Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS

    No full text
    The realtime follow-up of neutrino events is a promising approach to search for astrophysical neutrino sources. It has so far provided compelling evidence for a neutrino point source: the flaring gamma-ray blazar TXS 0506+056 observed in coincidence with the high-energy neutrino IceCube-170922A detected by IceCube. The detection of very-high-energy gamma rays (VHE, E>100GeV E > 100 G e V ) from this source helped establish the coincidence and constrained the modeling of the blazar emission at the time of the IceCube event. The four major imaging atmospheric Cherenkov telescope arrays (IACTs) - FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program of target-of-opportunity observations of neutrino alerts sent by IceCube. This program has two main components. One are the observations of known gamma-ray sources around which a cluster of candidate neutrino events has been identified by IceCube (Gamma-ray Follow-Up, GFU). Second one is the follow-up of single high-energy neutrino candidate events of potential astrophysical origin such as IceCube-170922A. GFU has been recently upgraded by IceCube in collaboration with the IACT groups. We present here recent results from the IACT follow-up programs of IceCube neutrino alerts and a description of the upgraded IceCube GFU system

    Quellen- und Literaturverzeichnis

    No full text
    corecore