31 research outputs found

    The effects of trimetazidine on lipopolysaccharide-induced oxidative stress in mice

    Get PDF
    The effects of trimetazidine, a novel anti-ischemic agent, on the development of oxidative stress induced in mice with lipopolysaccharide endotoxin were investigated. The drug was administered orally once daily at doses of 1.8, 3.6 or 7.2 mg/kg for two days prior to intraperitoneal (i.p.) injection of lipopolysaccharide E (200 μg/kg) and at time of endotoxin administration. Mice were euthanized 4 h after administration of the lipopolysaccharide. Lipid peroxidation (malondialdehyde; MDA), reduced glutathione (GSH) and nitric oxide (nitrite/nitrate) concentrations were measured in brain and liver. The administration of lipopolysaccharide increased oxidative stress in both the brain and liver tissue. MDA increased by 33.9 and 107.1 %, GSH decreased by 23.9 and 84.3 % and nitric oxide increased 70.3 and 48.4 % in the brain and liver, respectively. Compared with the lipopolysaccharide control group, brain MDA decreased by 26.2 and 36.7 %, while GSH increased by 18.2 and 25.8 % after the administration of trimetazidine at 3.6 and 7.2 mg/kg, respectively. Brain nitric oxide decreased by 45.3, 50.8 and 57.0 % by trimetazidine at 1.8, 3.6 and 7.2 mg/kg, respectively. In the liver, MDA decreased by 18.7, 30.7 and 49.4 % and GSH increased by 150.3, 204.8 and 335.4 % following trimetazidine administration at 1.8, 3.6 and 7.2 mg/kg. Meanwhile, nitric oxide decreased by 17.3 % by 7.2 mg/kg of trimetazidine. These results indicate that administration of trimetazidine in the presence of mild systemic inflammatory response alleviates oxidative stress in the brain and liver

    The effect of different antidepressant drugs of oxidative stress after lipopolysaccharide administration in mice

    Get PDF
    This study investigated the effect of the serotonin selective reuptake inhibitors (SSRIs) fluoxetine, sertraline, fluvoxamine and the tricyclic antidepressant (TCA) impiramine on oxi-dative stress in brain and liver induced by lipopolysaccharide administration in mice. Each drug was administered subcutaneously at doses of 10 or 20 mg/kg, for two days prior to in-traperitoneal (i.p.) administration of lipopolysaccharide E (LPS: 200 μg/kg). Mice were euthanized 4 h after administration of the lipopolysaccharide. Lipid peroxidation (malondial-dehyde; MDA), reduced glutathione (GSH) and nitric oxide (nitrite/nitrate) concentrations were measured in brain and liver. Results: The administration of lipopolysaccharide increased oxidative stress in brain and liv-er; it increased brain MDA by 36.1 and liver MDA by 159.8 %. GSH decreased by 34.1 % and 64.8 % and nitric oxide increased by 78.7 % and 103.8 % in brain and liver, respectively. In brain, MDA decreased after the administration of sertraline and by the lower dose of fluo-xetine or fluvoxamine, but increased after the higher dose of imipramine. Reduced glutathione increased after sertraline, fluvoxamine and the lower dose of fluoxetine or imipramine. Nitric oxide decreased by sertraline, fluoxetine, fluvoxamine and by the lower dose of imipramine. In the liver, all drugs decreased MDA and increased GSH level. Nitric oxide is decreased by sertraline, fluvoxamine and by the lower dose of fluoxetine or imipramine. It is concluded that, during mild systemic inflammatory illness induced by peripheral bacterial endotoxin in-jection, the SSRIs fluoxetine, sertraline and fluvoxamine reduced, while the TCA impiramine increased oxidative stress induced in the brain. The SSRIs as well as imipramine reduced oxi-dative stress due to lipopolysaccharide in liver tissue

    Hepatoprotective effects of citric acid and aspartame on carbon tetrachloride-induced hepatic damage in rats

    Get PDF
    The aim of this study was to investigate the effect of citric acid or the sweetening agent aspartame on the CCl4-induced hepatic injury in rats. Citric acid (10 mg/kg, 100 mg/kg or 1000 mg/kg), aspartame (0.625 or 1.25 mg/kg) or silymarin (25 mg/kg) was given once daily orally simultaneously with CCl4 and for one week thereafter. The administration of citric acid at 100 mg/kg or 1000 mg/kg to CCl4-treated rats reduced elevated plasma ALT by 44.1-63.3 %, AST by 47.8-70.6 %, ALP by 41.7-67.2 %, respectively compared to controls. Aspartame at 0.625 or 1.25 mg/kg reduced plasma ALT by 39.8-52.0 %, AST by 43.2-52.4 % and ALP by 50.0-68.5 %, respectively. Meanwhile, silymarin at 25 mg/kg reduced ALT, AST and ALP levels by 52.7, 62.2 and 64.7 %, respectively. On histology, citric acid at 1000 mg/kg resulted in near normalization of liver tissue. Vacuolar degeneration and necrosis were markedly reduced by 1.25 mg/kg aspartame. These results indicate that treatment with citric acid or the sweetening agent aspartame protects against hepatocellular necrosis induced by CCl4

    Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine

    Get PDF
    Haloperidol is a classic antipsychotic drug known for its propensity to cause extrapyramidal symptoms and impaired memory, owing to blockade of striatal dopamine D2 receptors. Cinnarizine is a calcium channel blocker with D2 receptor blocking properties which is widely used in treatment of vertiginous disorders. The present study aimed to see whether cinnarizine would worsen the effect of haloperidol on memory function and on oxidative stress in mice brain. Cinnarizine (5, 10 or 20 mg/kg), haloperidol, or haloperidol combined with cinnarizine was administered daily via the subcutaneous route and mice were examined on weekly basis for their ability to locate a submerged plate in the water maze test. Mice were euthanized 30 days after starting drug injection. Malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide (nitrite/nitrate) were determined in brain. Haloperidol substantially impaired water maze performance. The mean time taken to find the escape platform (latency) was significantly delayed by haloperidol (2 mg/kg, i.p.) on weeks 1-8 of the test, compared with saline control group. In contrast, those treated with haloperidol and cinnarizine showed significantly shorter latencies, which indicated that learning had occurred immediately. Haloperidol resulted in increased MDA in cortex, striatum, cerebellum and midbrain. GSH decreased in cortex, striatum and cerebellum and nitric oxide increased in cortex. Meanwhile, treatment with cinnarizine (20 mg/kg) and haloperidol resulted in significant decrease in MDA cortex, striatum, cerebellum and midbrain and an increase in GSH in cortex and striatum, compared with haloperidol group. These data suggest that cinnarizine improves the haloperidol induced brain oxidative stress and impairment of learning and memory in the water maze test in mice

    Isolation of biologically active metabolites from Bougainvillea spectabilis Willd. cultivated in Egypt

    Get PDF
    Bougainvillea spectabilis Willd.  is an ornamental plant cultivated in tropical, subtropical regions and other places as Egypt. The present study aimed to perform bioassay guided fractionation and isolation of some of the bioactive compounds from the Egyptian cultivate. The total ethanol extracts of the leaves (T.ET.L.), stems (T.ET.S.) and flowers (T.ET.F.) were screened for some pharmacological activities viz. in vivo anti-oxidant and anti-hepatotoxic, in addition to in vitro cytotoxic activities. The anti-oxidant effect was assessed by measuring serum glutathione level (GSH) in alloxan-induced diabetic rats. The anti-hepatotoxic activity was evaluated via measuring serum markers level viz. alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) in CCl4-induced hepatotoxicity in rats. In vitro cytotoxicity of the different extracts was estimated for liver cancer cell line (HEPG2) adopting Sulforhodamine B stain assay. T.ET.L. exhibited significantly potent anti-oxidant and anti-hepatotoxic activities, while T.ET.S. showed the highest cytotoxic activity. Through biological guided fractionation, leaves and stems were subjected to successive solvent extraction, whereas the leaves ethyl acetate (Et.Ac.L.) and the stems ethanol 70% (Et.70%S.) extracts showed highly potent activities. Thus, different chromatographic techniques were performed on Et.Ac.L. and Et.70%S. extracts leading to the isolation of five bioactive metabolites. Three flavonoids were isolated from Et.Ac.L.; genistein-7-O-rutinoside (1), formononetin-7-O-rutinoside (2) and myricetin (3), while orobol-7-O-glucoside (4) and hesperidin (5) were isolated from Et.70%S. This work demonstrated the importance of the plant as a promising anti-oxidant, anti-hepatotoxic and cytotoxic product for nutraceutical use

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Effects of Biphenyldimethyl-dicarboxylate Administration Alone or Combined with Silymarin in the CCL4 Model of Liver Fibrosis in Rats

    Get PDF
    The effect of biphenyldimethyldicarboxylate (DDB), a synthetic compound, in use for the treatment of chronic hepatitis was studied on hepatic injury caused in rats by administration of carbon tetrachloride (CCl4). Starting at time of administration of the first dose of CCl4, rats received DDB at four dose levels (3, 15, 75 or 375 mg/kg), silymarin (22 mg/kg), a combination of DDB (75 mg/kg) and silymarin (22 mg/kg) or saline (control) once orally daily for 30 days. The administration of DDB in CCl4-treated rats at 75 or 375 mg/kg resulted in 61.2-76.2% decrease in alanine aminotransferase (ALT) and 46.9-60.8% decrease in aspartate aminotransferase (AST), respectively compared with the CCl4 control group. Silymarin treatment resulted in 34.6 and 30% decrease in ALT and AST, while DDB (75 mg/kg) combined with silymarin (22 mg/kg) resulted in 58.2 and 31% decrease in ALT and AST, respectively. Serum creatinine increased by 50% by DDB at 375 mg/kg. After treatment with DDB at 75 or 375 mg/kg or DDB combined with silymarin, the development of liver necrosis and fibrosis caused by CCl4 was markedly reduced, while after DDB combined with silymarin no DNA aneuploid cells could be observed. The decrease in glycogen and protein contents in hepatocytes caused by CCl4 was markedly prevented by co-treatment with DDB at 75 or 375 mg/kg or DDB combined with silymarin. It is concluded that in the model of hepatic injury caused by chronic administration of CCl4 in rats, the synthetic compound DDB, limits hepatocellular injury and exerts antifibrotic effect. Better improvement in protein, DNA, mucopolysaccharide content was seen after both DDB and silymarin compared to DDB alone. It is suggested, therefore, that DDB alone or in combination with silymarin might prove of benefit in the therapy of chronic liver disease. Monitoring of kidney functions in patients taking DDB is warranted

    Preventive effects of cannabis on neurotoxic and hepatotoxic activities of malathion in rat

    No full text
    Objective: To investigate the effect of Cannabis sativa extract on the development of neuro- and hepato-toxicity caused by malathion injection in rats. Methods: The extract of Cannabis sativa was obtained from the plant resin by chloroform treatment. Δ-Tetrahydrocannabinol content of the extract (20%) was quantified using gas chromatography–mass spectrometry. The doses of cannabis extract were expressed as Δ -tetrahydrocannabinol content of 10 or 20 mg/kg. Malathion (150 mg/kg) was intraperitoneally administered followed after 30 min by the cannabis extract (10 or 20 mg/kg, subcutaneously). Rats were euthanized 4 h later. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide and paraoxonase-1 (PON-1) activity were determined in brain and liver. Brain 5-lipoxygenase and butyrylcholinesterase (BChE) activity were measured as well. Histopathological examination of brain and liver tissue was also performed. Results: Compared to controls, malathion resulted in increased oxidative stress in brain and liver. MDA and nitric oxide concentrations were significantly increased (P<0.05) and GSH significantly decreased with respect to control levels (P<0.05). Malathion also significantly inhibited PON-1 and BChE activities but had no effect on brain 5-lipoxygenase. Brain MDA concentrations were not altered by cannabis treatment. Cannabis at 20 mg/kg, however, caused significant increase in nitric oxide and restored the GSH and PON-1 activity. Brain BChE activity significantly decreased by 26.1% (P<0.05) after treatment with 10 mg/kg cannabis. Cannabis showed no effect on brain 5-lipoxygenase. On the other hand, rats treated with cannabis exhibited significantly higher levels of liver MDA, nitric oxide and PON-1 activity compared with the malathion control group. Rats treated with only malathion exhibited spongiform changes, neuronal damage in the cerebral cortex and degeneration of some Purkinje cells in the cerebellum. There were also hepatic vacuolar degeneration and dilated and congested portal vein. These histopthological changes induced by malathion in brain and liver were reduced to great extent by cannabis administration at 20 mg/kg. Conclusions: Our data suggest that acute treatment with cannabis alleviates the malathion-induced brain and hepatic injury in rats possibly by maintaining the levels of GSH and PON-1 activity
    corecore