89 research outputs found

    Synthesis, spectral characterization, cyclic voltammety, molecular modeling and catalytic activity of sulfa-drug divalent metal complexes

    Get PDF
    Complexes of cobalt(II), nickel(II), copper(II), zinc(II) and Hafnium(II) of general composition [M(L)2(Cl)2] have been synthesized [L = 4-(phenylphosphinylideneamino-N-thiazolylbenzenesulfonamide]. The elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, UV, NMR, SEM, EDX, thermal and EPR spectral studies of the compounds led to the conclusion that the ligand acts as a bidentate manner. The molar conductance of the complexes in fresh solution of DMSO lies in the range of 7.46–9.13 Ω-1 cm2mol‒1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The ligand acts as bidentate ligand, coordinated through sulfonamide oxygen and thiazole nitrogen atoms. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The catalytic activities of the divalent metal complexes have been studied in the oxidation of cyclohexane, using environmental friendly oxidant, hydrogen peroxide. Complex with rough surface has shown higher catalytic activity compared to the other complexes. The molecular parameters of the ligand and its Co(II) and Hf(II) complexes have been calculated.Â

    Safe approaches for camptothecin delivery: Structural analogues and nanomedicines

    Full text link
    [EN] Twenty-(S)-camptothecin is a strongly cytotoxic molecule with excellent antitumor activity over a wide spectrum of human cancers. However, the direct formulation is limited by its poor water solubility, low plasmatic stability and severe toxicity, which currently limits its clinical use. As a consequence, two strategies have been developed in order to achieve safe and efficient delivery of camptothecin to target cells: structural analogues and nanomedicines. In this review, we summarize recent advances in the design, synthesis and development of camptothecin molecular derivatives and supramolecular vehicles, following a systematic classification according to structure-activity relationships (structural analogues) or chemical nature (nanomedicines). A series of organic, inorganic and hybrid materials are presented as nanoplatforms to overcome camptothecin restrictions in administration, biodistribution, pharmacokinetics and toxicity. Nanocarriers which respond to a variety of stimuli endogenously (e.g., pH, redox potential, enzyme activity) or exogenously (e.g., magnetic field, light, temperature, ultrasound) seem the best positioned therapeutic materials for optimal spatial and temporal control over drug release. The main goal of this review is to be used as a source of relevant literature for others interested in the field of camptothecin-based therapeutics. To this end, final remarks on the most important formulations currently under clinical trial are provided. (C) 2016 Elsevier B.V. All rights reserved.Financial support of the Spanish Ministry of Economy and Competitiveness (projects MAT2012-39290-C02-02 and SEV-2012-0267) is gratefully acknowledged. Dr. E.M. Rivero thanks the Cursol Foundation for a post-doctoral scholarship.Botella Asuncion, P.; Rivero-Buceta, EM. (2017). Safe approaches for camptothecin delivery: Structural analogues and nanomedicines. Journal of Controlled Release. 247:28-54. https://doi.org/10.1016/j.jconrel.2016.12.023S285424

    Synthesis, Spectral Characterization, and Thermal and Cytotoxicity Studies of Cr(III), Ru(III), Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) Complexes of Schiff Base Derived from 5-Hydroxymethylfuran-2-carbaldehyde

    No full text
    Coordination compounds of Cr(III), Ru(III), Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions were synthesized from the furan ligand [5-hydroxymethylfuran-2-yl-methyleneaminoquinolin-2-one] (H-MFMAQ) derived from the condensation of 5-hydroxymethylfuran-2-carbaldehyde and 1-aminoquinolin-2(1H)-one. Elemental analytical data, IR, NMR (1H, 13C, and 15N), EPR, XRD, SEM, TEM, EDX, TGA, mass, molar conductance, magnetic moment, and UV-Visible spectra techniques were used to confirm the structure of the synthesized chelates. According to the data obtained, the composition of the 1 : 1 metal ions : furan Schiff base ligand was found to be [M(MFMAQ)Cl2] (M = Cr(III) and Ru(III)) and [M(MFMAQ)Cl(H2O)]·nH2O in which (M = Mn(II); n=1, Co(II); n=0, Ni(II); n=2, Cu(II); n=0 and Zn(II); n=2.5). The measurements of magnetic susceptibility, ligand field parameter, and reflectance spectra suggested an octahedral geometry for the complexes. Central metals ions and furan Schiff base coordinated via O3 and N donor sites which was observed from IR spectra. The cytotoxic activities of all inspected compounds were evaluated towards human breast (MCF-7) and lung cancer (A549) cell lines

    Synthesis, spectral characterization, anticancer and antibacterial studies of cyclodiphosph(V)azane derivatives and their copper(II) complexes

    No full text
    <p>The new cyclodiphosph(V)azane derivatives (1,3-dimethyl-2,4-dioxo-2',4'-bis(2,4-bis(dimethylaminopropylimino)cyclodiphosph(V)azane <b>(H<sub>2</sub>L<sup>1</sup>)</b> (1,3-dimethyl-2,4-dioxo-2',4'-bis(2,4-bis(dimethylaminoethylimino)cyclodiphosph(V)azane <b>(H<sub>2</sub>L<sup>2</sup>)</b> and (1,3-dimethyl-2,4-dioxo-2'-(dimethylaminoethylimino)-4'-(dimethylaminopropyl-imino)cyclodiphosph(V)azane <b>(H<sub>2</sub>L<sup>3</sup>)</b> containing four active coordination centers (NNNN) and their Cu(II) complexes have been synthesized and characterized by elemental analyses, spectroscopic methods, molar conductance as well as thermal and magnetic measurements. The UV–Vis and mass spectra of the ligands and their Cu(II) complexes were also recorded. The copper(II) complexes were found to have magnetic moments of 1.58–1.69 B. M. corresponding to one unpaired electron. The possible geometries of the complexes were assigned on the basis of EPR, electronic, and infrared spectral studies. The absence of water molecules in all complexes was supported by thermal studies. All the thermal decomposition processes ended with the formation of CuO. The kinetic and thermodynamic parameters have been calculated. The ligand <b>(H<sub>2</sub>L<sup>3</sup>)</b> and its Cu(II) complexes were screened for their anticancer studies against human breast cancer cell lines MCF-7 and minimum inhibitory concentration was calculated. The screening was extended to the antibacterial activity using Kirby–Bauer single disk susceptibility test for all compounds.</p
    • …
    corecore