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Rice is the most versatile model for cereals and also an economically relevant food
crop; as a result, it is the most suitable species for molecular characterization of Fe
homeostasis and biofortification. Recently there have been significant efforts to dissect
genes and quantitative trait loci (QTL) associated with Fe translocation into rice grains;
such information is highly useful for Fe biofortification of cereals but very limited in other
species, such as maize (Zea mays) and wheat (Triticum aestivum). Given rice’s centrality
as a model for Poaceae species, we review the current knowledge on genes playing
important roles in Fe transport, accumulation, and distribution in rice grains and QTLs
that might explain the variability in Fe concentrations observed in different genotypes.
More than 90 Fe QTLs have been identified over the 12 rice chromosomes. From
these, 17 were recorded as stable, and 25 harbored Fe-related genes nearby or within
the QTL. Among the candidate genes associated with Fe uptake, translocation, and
loading into rice grains, we highlight the function of transporters from the YSL and
ZIP families; transporters from metal-binding molecules, such as nicotianamine and
deoxymugineic acid; vacuolar iron transporters; citrate efflux transporters; and others
that were shown to play a role in steps leading to Fe delivery to seeds. Finally, we
discuss the application of these QTLs and genes in genomics assisted breeding for
fast-tracking Fe biofortification in rice and other cereals in the near future.
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INTRODUCTION

Hidden hunger affects more than two billion people worldwide and is among the major challenges
to be addressed on a priority basis to achieve Zero Hunger, particularly in African, Asian, and
Latin-American countries. Indeed, each year there are ca. three million deaths due to nutritional
deficiencies, mainly proteins, vitamins, and minerals (FAO et al., 2019). Among the 22 essential
trace elements, iron (Fe), zinc (Zn), selenium (Se), and iodine (I) deficiencies affect more than
half of the world population (World Health Organization, 2002), the first being the most common
nutritional disorder (Kennedy et al., 2003; IFPRI, 2015). Fe is crucial for the normal functioning
of several biological processes in living organisms (White and Broadley, 2009; Abbaspour et al.,
2014; Toxqui and Vaquero, 2015), mainly due to its major role in catalytic activities of many
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enzymes, such as those related to oxygen transport, electron
transfer, oxi-reduction reactions, collagen biosynthesis, and
vitamin D metabolism (Abbaspour et al., 2014; Toxqui and
Vaquero, 2015).

According to the World Health Organization, the prevalence
of anemia (insufficient number of red blood cells or oxygen-
carrying capacity) ranges from 23% in developed countries to
52% in the developing world, and half of the cases are derived
from Fe deficiency (World Health Organization, 2015). Although
Fe deficiency anemia (IDA) affects all population groups, children
and pregnant women are the most vulnerable targets (World
Health Organization, 2008). Chronic IDA seriously compromises
growth and development in children, impairing cognitive and
motor development and enhancing susceptibility to infections
(Gupta et al., 2016; Wieringa et al., 2016). In adults, anemia affects
the immune system and causes fatigue and reduced physical
and psychological performance (Failla, 2003; Camaschella, 2017).
In any case, the extent of IDA in human health depends on
a combined set of environmental, genetic, and physiological
factors (Toxqui and Vaquero, 2015; Cappellini et al., 2019).
Besides IDA, other types of anemia may be related to (i) active
bleeding related to menstruation, wounding, gastrointestinal
ulcers, and cancer; (ii) kidney disease related to the decrease in the
hormone erythropoietin, involved in the production of red blood
cells; (iii) obesity-related systemic inflammation that increases
hepcidin, reducing Fe availability; (iv) alcoholism (premature
destruction of defective red blood cells); and (v) sickle cell
anemia and thalassemia, two genetically inherited diseases related
to the abnormal production of hemoglobin (Abbaspour et al.,
2014). Additionally, Fe deficiency is also a factor of risk for
osteoporosis as it is a key component of enzymes involved in bone
metabolism, i.e., biosynthesis of collagen, the main component of
connective tissue.

In plants, Fe is also a crucial constituent of several proteins
and enzymes involved in key pathways that sustain plant growth,
development, and metabolism, and its deficiency is directly
related to the decrease in crop performance (productivity and
quality) (Lucena and Hernandez-Apaolaza, 2017; Tripathi et al.,
2018). Among others, Fe nutrition has been related to plant
tolerance to biotic and abiotic stresses (Aznar et al., 2015;
Tripathi et al., 2018; Cesco et al., 2020), being a key element in
photosynthesis (Balk and Schaedler, 2014; Krohling et al., 2016),
which is affected by different stresses (Munns and Tester, 2008;
Chaves et al., 2009). Additionally, due to its low solubility in
soils, Fe availability to plants is quite low (Briat et al., 2015).
Thus, with the current challenges of agriculture imposed by
the current scenario of climate change, population growth, and
undernourishment taken together, the development of strategies
that allow the improvement of Fe concentration in crops is
mandatory to achieve food and nutritional security.

Mineral supplements, food fortification, and crop
biofortification are the three strategies that can be used to
fight malnutrition. However, implementation of the first two
strategies is complex and almost unaffordable in developing and
less developed countries; the third strategy constitutes an effective
and durable approach (Gómez-Galera et al., 2010; Murgia et al.,
2012; Briat et al., 2015). Manipulation of the microbiome, such

as using plant growth–promoting bacteria, holds promise to help
improve plant nutrition, but it is still at the beginning regarding
nutrient levels in edible seeds (Pii et al., 2016; Scagliola et al.,
2021). Biofortification strategies include agronomic practices,
breeding, and genetically engineered crops, separately or
combined (Gómez-Galera et al., 2010). Although conventional
breeding is a long-term strategy and transgenic approaches
are controversial, costly, and time-consuming, marker assisted
breeding (MAB) seems to be the most straightforward step to
improve mineral quality of crops.

In this review, we summarize the current knowledge of
quantitative trait loci (QTL) identified in multiple studies using
different genotypes and review the known genes associated with
Fe delivery and accumulation in rice grains. The combination of
both is key to identifying the most likely genes to contribute to
fast-track the development of Fe-biofortified crops.

GENES CONTROLLING FE
TRANSLOCATION AND LOADING IN
SEEDS

There is considerable interest in producing Fe-biofortified cereals
for human consumption, and as a result, there are many
research groups focused on understanding Fe homeostasis and
mechanisms controlling Fe translocation and loading into seeds
of cereal. Here, we briefly review the genes that are clearly shown
to have a role in controlling Fe loading in seeds, whether directly
or indirectly (Whitt et al., 2020). Other genes that have known
functions and were used to generate transgenic, biofortified
plants are not included (for a review, see Connorton and Balk,
2019).

Fe is translocated to seeds from two sources: directly
from the soil solution through root uptake and remobilization
from different tissues and organs during seed development
(Sperotto, 2013; Che et al., 2019). Most of our knowledge
about Fe homeostasis is focused on Fe transporters involved
in root uptake/root radial movement and transcriptional
regulators, whereas Fe homeostasis in shoots and seeds is
less understood.

Plants from the Poaceae family use a chelation-based
strategy for Fe acquisition, also called Strategy II. For that,
phytosiderophores (PS—2′-deoximugineic acid, or DMA, is
common in grasses) are secreted to the rhizosphere by major
facilitator superfamily transporters (OsTOM1/OsZIFL4 in rice;
Nozoye et al., 2011; Ricachenevsky et al., 2011), which chelate
Fe3+ and form Fe3+-PS complexes that are transported into root
cells by Yellow Stripe-Like (YSL) family transporters (OsYSL15
in rice; Inoue et al., 2009; Lee et al., 2009; Conte and Walker,
2012; Sperotto et al., 2012). Rice also uses Fe2+ transporters
(OsIRT1 and OsIRT2) in roots (Ishimaru et al., 2006). Non-
Poaceae species employ a reduction-based strategy in which Fe3+

is reduced to Fe2+ by ferric-chelate reductase and enters into root
cells by IRT/ZIP family transporters (Kobayashi and Nishizawa,
2012). Rice uses a combined strategy for Fe uptake, a trait that
was recently shown to have evolved before the domestication of
cultivated rice (Wairich et al., 2019). Evidence also points to other
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possible mixed mechanisms of Fe acquisition in eudicots (Xiong
et al., 2013; Grillet and Schmidt, 2019).

The YSL gene family was first characterized in maize and
found to be involved in acquisition of Fe3+-PS complexes from
the soil (Curie et al., 2001). In rice, OsYSL15 performs Fe3+-
PS uptake into root outer cells, and its expression is increased
under Fe deficiency in roots (Inoue et al., 2009; Lee et al., 2009).
OsYSL15 is also expressed in developing seeds (Inoue et al., 2009;
Lee et al., 2009), and knockout osysl15 plants show decreased Fe
seed concentration although overexpression of OsYSL15 results
in the opposite phenotype (Lee et al., 2009). Although these
data suggest that OsYSL15 may be involved in the control of
Fe concentration in seeds, it is not possible to separate the role
of OsYSL15 in Fe primary uptake and Fe loading based on the
current evidence.

Nicotianamine (NA) is a ubiquitous metal-chelating non-
proteinogenic amino acid in land plants. NA is a synthesized from
three molecules of S-adenosyl-methionine by NA synthase (NAS)
and can either be a substrate for phytosiderophore synthesis
or chelate metals and function in long distance transport.
In A. thaliana, four NAS genes were shown to have roles
in Fe distribution, presumably through Fe-NA binding and
translocation in the phloem (Klatte et al., 2009; see below about
Fe-NA transporters). NAS genes from barley and rice were
also overexpressed in soybean, tobacco, sweet potato, and rice
(or expressed under control of endosperm-specific promotor)
to increase Fe translocation to seeds with promising advances
for biofortification (reviewed by Nozoye, 2018). Despite the
usefulness of NAS genes in transgenic approaches, little is known
about their specific physiological function in cereals.

Rice has three NAS genes, OsNAS1, OsNAS2, and OsNAS3
(Inoue et al., 2003). From these, OsNAS1 and OsNAS2 are strongly
upregulated under Fe deficiency, whereas OsNAS3 is induced
upon Fe excess (Nozoye, 2018). OsNAS3 is shown to be important
for Fe translocation within the plant because knockout osnas3
plants have decreased Fe levels in flag leaves and seeds, whereas
plants with increased expression of OsNAS3 by activation tagging
(OsNAS3-D1) show the opposite phenotype (Lee et al., 2009). The
same knockout osnas3 plants are shown to be more sensitive to Fe
excess, and OsNAS3-D1 plants are more tolerant to Fe deficiency
(Lee et al., 2009; Nozoye et al., 2019), suggesting that endogenous
NA is important for Fe translocation and detoxification under Fe
toxicity conditions.

OsYSL2 is an Fe2+-NA plasma membrane transporter that
loads Fe into phloem cells (Koike et al., 2004) and is required
for Fe translocation to seeds, especially to the endosperm
(Ishimaru et al., 2010). Similarly, the plasma membrane-localized
transporter OsYSL13 is involved in Fe distribution from old
leaves to younger leaves under Fe deficiency conditions. Loss-of-
function plants for OsYSL13 showed decreased Fe concentration
in seeds, which indicates that long-distance transport of Fe
is mediated by YSL family members and is important for
controlling Fe concentration in seeds (Zhang et al., 2018b).

OsYSL9 is shown to transport both Fe2+-NA and Fe3+-DMA
and linked to the Fe deficiency response (Senoura et al., 2017).
OsYSL9 is strongly expressed in reproductive tissues, especially
in the scutellum and inner regions of the endosperm during seed

development. OsYSL9-knockdown plants show decreased Fe in
embryos but increased Fe in the endosperm. Therefore, OsYSL9
is involved in embryo Fe loading from the endosperm through
the scutellum and might be a good target for biofortification
(Senoura et al., 2017).

One of the most exciting findings in the quest to identify
transporters that control Fe loading in cereal seeds is the
functional characterization of vacuolar iron transporter (VIT)
family genes in rice, OsVIT1 and OsVIT2 (Zhang et al., 2012).
Both genes are homologous to AtVIT1, which controls Fe
localization in A. thaliana (Kim et al., 2006). OsVIT1 and OsVIT2
were suggested to store Fe in vacuoles of flag leaf cells, decreasing
Fe availability for translocation to developing seeds via phloem.
This is consistent with the finding that osvit1 and osvit2 knockout
mutant plants have increased Fe in seeds due to less Fe storage
in leaf cell vacuoles and increased translocation (Zhang et al.,
2012). This finding is confirmed in an independent work (Bashir
et al., 2013). Moreover, both studies found that seeds of osvit1 and
osvit2 changed Fe distribution within the embryo (Zhang et al.,
2012; Bashir et al., 2013). Interestingly, TaVIT2 (but not TaVIT1)
overexpression using an endosperm-specific promoter increased
Fe accumulation in the white flour fraction in wheat and barley
grains, supporting the usefulness of these genes in biofortification
by increasing endosperm sink strength (Connorton et al., 2017).

Regulation of Fe deficiency response is linked to the
concentration of Fe in seeds. The HRZ [Haemerythrin motif-
containing Really Interesting New Gene (RING)- and Zinc-finger
protein 1] genes from rice are homologs of BRUTUS/BRUTUS-
like proteins from A. thaliana, which are shown to be
negative regulators of the Fe deficiency response at the post-
transcriptional level (Hindt et al., 2017; Rodriguez-Celma
et al., 2019). OsHRZ1 and OsHRZ2 knockdown plants showed
tolerance to low Fe and grew better in calcareous soil, in which Fe
is less available. Increased protein levels of Fe uptake transporters
are a likely explanation for this phenotype because degradation
of upstream transcription factors, presumably targets of OsHRZ1
and OsHRZ2, is decreased (Kobayashi et al., 2013). Interestingly,
the authors found that OsHRZ1 and OsHRZ2 knockdown plants
show increased Fe concentration in brown rice, indicating
that higher Fe uptake in roots can increase Fe loading in
seeds indirectly.

The mitochondrial iron regulated (MIR) gene was found to
indirectly control Fe concentration in rice seeds (Ishimaru et al.,
2009; de Oliveira et al., 2020). Plants that have no functional
MIR are unable to properly regulate Fe levels as they accumulate
more Fe in roots, shoots, and seeds while having constitutively
high expression of Fe uptake genes (Ishimaru et al., 2009).
This is consistent with data showing that OsIRT1 (the rice
Fe2+ transporter involved in Fe uptake) overexpression leads
to increased Fe in roots, shoots, and seeds (Lee and An, 2009).
Therefore, increased Fe uptake by roots seems to indirectly affect
Fe loading in seeds.

Another important step for Fe delivery to developing seeds
is Fe redistribution from the node. The intricate vasculature
of the node allows for nutrients, such as Fe, to be redirected
from the xylem transpiration stream to panicles, which requires
at least three intervascular transfer steps, and depends on
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transporters for many elements (Yamaji and Ma, 2014, 2017).
OsFRDL1 is a citrate transporter necessary for Fe transport to
reproductive tissues. OsFRDL1 is the functional equivalent of
A. thaliana AtFRD3, i.e., citrate efflux to the xylem for Fe3+-
citrate complex formation, a necessary step for Fe translocation
from roots to shoots through the transpiration stream (Rogers
and Guerinot, 2002; Green and Rogers, 2004; Yokosho et al.,
2009; Roschzttardtz et al., 2011). OsFRDL1 is also expressed
in shoots, mainly in vascular tissues, including leaves, nodes,
peduncle, rachis, filament of the anthers, and husk. Knockout
plants for OsFRDL1 show significantly decreased pollen viability
and fertility compared with wild type. Interestingly, Fe deposition
in the parenchyma cell bridges of the nodes, where Fe (and Zn)
accumulates in wild type, is higher in mutant plants, whereas Fe
concentration in flag leaves is lower. Taken together, the data
suggest that OsFRDL1 is important for Fe solubilization and
transport to panicles from nodes (Yokosho et al., 2016).

Recently, OsVMT/OsZIFL12 was linked to Fe (and Zn)
translocation to grains (Che et al., 2019). OsVMT is localized in
the vacuole and has DMA transport activity. At the vegetative
stage, OsVMT is highly expressed in the exodermis and
endodermis of roots, and at the reproductive stage, at the
parenchyma cell bridges of the node I (Che et al., 2019). The
authors suggest that OsVMT is involved in sequestering DMA
into root vacuoles, which is necessary for Fe3+-DMA complex
formation and subsequent export from vacuoles and loading
in xylem, where Fe3+-DMA is translocated to shoots (Che
et al., 2019). Accordingly, osvmt mutants show increased Fe
and Zn concentration in polished seeds. The authors suggest
that, because OsVMT is highly expressed in the parenchyma
cell bridges, an anatomical region that accumulates Fe and Zn
(Moore et al., 2014; Yamaji and Ma, 2019), the lack of functional
OsVMT leads to higher DMA in the cytosol, which solubilizes
more Fe (and Zn), increasing translocation and loading into
seeds. The accumulation of DMA in polished seeds of mutant
plants compared with wild-type (Che et al., 2019) supports this
hypothesis. Therefore, rice uses both DMA and citrate to chelate
Fe for translocation from nodes to developing seeds, suggesting
that, as with other nutrients, control of nutrient transport in the
node is key for Fe loading in seeds.

One important regulator of Fe, Zn, and protein levels in
wheat (T. turgidum ssp. durum) seeds, a NAC transcription
factor named NAM-B1, was described years ago. NAM-B1 is
non-functional in modern pasta wheat varieties, whereas in the
ancestral wild emmer wheat (T. turgidum ssp. dicoccoides), it
is fully functional. Introgression lines and RNAi experiments
show that the reduced/loss of function of NAM-B1 leads to
delayed senescence and decreased Fe levels in grains, indicating
that senescence timing is important for Fe translocation to
seeds (Uauy et al., 2006). However, no gene with similar
function was found in rice despite several efforts (Sperotto
et al., 2009; Distelfeld et al., 2012; Jeong et al., 2013). Therefore,
wild relatives of wheat are an interesting source of genetic
variability for improving Fe concentration in cultivated wheat
varieties, an approach that can be used with wild rice species
(Ricachenevsky and Sperotto, 2016; Bierschenk et al., 2020;
Wairich et al., 2020).

Although gene functional characterization has been prolific in
the last few years, we are still lacking a comprehensive model of
how rice plants transport Fe from root uptake to delivery to seeds.
Major questions are still open, such as how many transporters
are relevant for Fe (either Fe3+ or Fe2+) uptake in roots, how
they work in concert to achieve optimal Fe nutrition, and how Fe
is delivered and loaded in the developing seed. Moreover, there
is no information on genes directly linked to natural variation
in Fe seed concentration or to Fe homeostasis in general in rice.
Increasing our basic gene function in Fe homeostasis, combined
with the number of QTLs already identified, should help fill that
gap in the future.

QTLS ASSOCIATED WITH FE
CONCENTRATION IN RICE GRAINS

Increasing the bioavailable Fe concentration in the rice
endosperm is the major goal of the rice Fe-biofortification
program (Mayer et al., 2008; Shahzad et al., 2014). However,
conventional breeding efforts to develop high-Fe rice have not
been successful except for the release of a high-Fe rice variety
NSIC Rc172 (MS13). This variety was developed by crossing
IR72, a high-yielding rice variety, with a tall traditional rice land
race, Zawa Bonday. It has higher levels of Fe in both brown
and white rice and possesses excellent agronomic, grain, and
cooking quality traits (Gregorio et al., 2000; Swamy et al., 2016).
Even the bioefficacy feeding trials using this rice variety showed
increased Fe status in the human body and made positive health
impacts (Haas et al., 2005). But there were not many concerted
efforts to scale up and disseminate this product, and it failed to
upgrade the variety with improved tolerance to prevailing biotic
and abiotic stresses.

The narrow genetic variation, complex genetic architecture,
huge genotype and environmental interactions are the major
constraints for developing a high-Fe rice by traditional breeding
(Kawakami and Bhullar, 2018; Connorton and Balk, 2019;
Ludwig and Slamet-Loedin, 2019). Therefore, understanding the
molecular basis, particularly identification of causative genes
linked to variation in Fe concentration in seeds of several rice
genotypes is instrumental for generating biofortified cultivars.
However, to date, no such gene was isolated despite the number of
QTLs mapped. Here we summarize the known QTLs that could
be useful for rice Fe biofortification (Table 1).

We reviewed 20 published papers that focused on QTL
identification for Fe concentration in rice and closely related
species. Overall, 93 QTLs and 50 metal homeostasis-related
candidate genes have been reported in rice with the highest
number of QTLs reported on chromosomes 1, 3, and 7 (Figure 1
and Table 1). Seventeen Fe QTLs detected on chromosomes
1–4, 6–8, 10, and 11 were stable across different seasons,
locations, environments, and populations. Some of the most
prominent stable Fe QTLs are qFe1, qFe1.1, qFe1.2, qFe2−1,
qFe3.1, qFe3−1, qFe6.1, qFe6.2, qFe7, qFe8.2, qFe10.1, and qFe11.
It is interesting to note that several positive QTL alleles
for increased Fe concentration were contributed by wild rice
species, such as O. nivara and O. rufipogon, deep water rice
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TABLE 1 | List of QTLs and candidate genes reported for iron concentration in rice.

Population Parents Lines Env Chr No. of QTLs QTLs R2 (%) References

Multiple crosses – – – 7, 8, 9 3 19–30 Gregorio et al.,
2000

DH IR64/Azucena 129 1 2, 8, 12 3 14–18 Stangoulis et al.,
2007

RILs Zhenshan 97/Minghui 63 241 1 1, 9 2 qFe-1, qFe-9 11–26 Lu et al., 2008

ILs Teqing/O. rufipogon 85 1 2, 9 2 qFe2-1, qFe9-1 5–7 Garcia-Oliveira
et al., 2009

RILs Bala/Azucena 105 1 1, 3, 4, 7 4 qFe1, qFe3, qFe4, qFe7 10–21 Norton et al.,
2010

RILs Madhukar/Swarna 168 1 1, 5, 7, 12 7 qFe1.1, qFe1.2, qFe5.1, qFe7.1,
qFe7.2, qFe12.1, qFe12.2

69–71 Anuradha et al.,
2012

DH Chunjiang 06/TN1 120 2 1, 6, 8 3 11–22 Du et al., 2013

F2 Swarna/Madhukar 178 1 3, 4 3 1–13 Nagesh et al.,
2013

RILs, ILs Lemont/TeQing 280/123 2 1, 2, 3, 4, 5, 6,
7, 8, 10

13 3–5 Zhang et al.,
2014

BILs IR75862/Ce258; IR75862/
Zhongguangxiang1

401 2 1, 2, 6, 7, 11 5 qFe1, qFe2, qFe6, qFe7, qFe11 6–18 Xu et al., 2015

BILs Xieqingzao × O. rufipogon 202 2 3, 6, 9 3 qFe3, qFe6, qFe9 6–28 Hu et al., 2016

BC2F2 Swarna × O. nivara
(IRGC81832, IRGC81848)

245/227 1 1, 2, 3, 4, 6, 8,
11, 12

15 qFe1.1, qFe1.2, qFe1.3, qFe2.1, qFe2.2,
qFe3.1, qFe3.2, qFe4.1, qFe6.1, qFe8.1,
qFe8.2, qFe11.1, qFe11.2, qFe11.3,
qFe12.1

4–25 Swamy et al.,
2018b

Multiparent MAGIC Plus 144 4 3, 7, 9, 10, 11 7 qFe3.1, qFe3.2, qFe7.1, qFe9.1, qFe9.2,
qFe10.1, qFe11.1

9–14 Descalsota et al.,
2018

DH PSBRc82 × Joryeongbyeo;
PSBRc82 × IR69428

130; 97 2 4 1 qFe4.1 9 Swamy et al.,
2018a

Panel colored rice accessions 152 2 6, 12 2 qFe6.1, qFe12.1 10.3–10.6 Descalsota-
Empleo et al.,
2019a,b

BC2F5 RP Bio-226 × Sampada 111 2 1, 6 4 qFe1.1, qFe1.2, qFe6.1, qFe6.2 1–17 Dixit et al., 2019

RILs PAU201 × Palman 579 177, 106 1 5, 7, 9 5 qFE5.1, qFE5.2, qFE5.3, qFE7.1, qFE9.1 35–95 Kumar et al.,
2019

DH IR05F102 × IR69428 148 3 9, 12 2 qFe9.1, qFe12.1 12–13 Calayugan et al.,
2020

DH 93-11 × Milyang 352 123 2 3 7 qFe3−1, qFe3−2 11–17 Lee et al., 2020

DH Goami 2’ × “Hwaseonchal” 110 1 1, 4, 6, 7, 11 qFe1.1, qFe1.2, qFe1.3, qFe4,1 qFe6,
qFe7, qFe11

12–41 Jeong et al.,
2020

DH, Double Haploids; RILs, Recombinant Inbred Lines; ILs, Introgression Lines; R2, Phenotypic Variance; Env, Environment. Bold denotes stable QTLs across different
seasons, locations, environments, and populations.

Madhukar and Jalamagna, and land races (Anuradha et al., 2012;
Swamy et al., 2018b). The stability of the Fe QTLs in multiple
populations and environments and their association with
candidate genes involved in Fe homeostasis makes them useful
for MAB or genomic selection (GS) and for further molecular
characterization to understand the molecular mechanisms.

A total of 25 QTLs harbor known metal or Fe homeostasis-
related candidate genes nearby or within the QTL. The highest
number of reported Fe QTL with clear Fe homeostasis related
candidate genes were on chromosomes 1, 3, 4, and 7 (Table 2).
These genes were found to be involved in Fe acquisition
in roots, biosynthesis of root exudates, uptake, translocation,
and loading of Fe into different tissues/organs and to rice
grains (Table 2). Some of the Fe homeostasis genes, such as
OsNAS1, OsNAS2, OsFer, OsVIT1, OsVIT2, OsZIP, OsIRO2, and
OsIRT1, have already successfully been cloned, and transgenics

have been developed, which had up to a sixfold increase in
Fe concentration and fourfold increase in Zn concentration
compared to their respective base lines (Masuda et al., 2013;
Kawakami and Bhullar, 2018). It is also interesting note that Fe
and Zn loading pathways seem to be shared because increasing
Fe usually results in increased Zn as well. Evidence for such
shared pathways for Fe and Zn loading are emerging in other
grasses, such as wheat (Astolfi et al., 2018). Still, most of the Fe
accumulates in the brown rice, and a significant portion of the Zn
accumulates in the endosperm (Johnson et al., 2011). Therefore,
it might be feasible to generate biofortified rice varieties for both
micronutrients simultaneously.

The narrow genetic variation for Fe concentration in polished
rice in the readily useable primary gene pool of rice (i.e.,
species with AA genome, closely related to Oryza sativa) is a
major constraint. There is a need to revisit the gene bank and
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FIGURE 1 | Summary of Fe QTLs and genes reported from different studies in
rice.

screen gene bank accessions, especially wild rice and land races
using more accurate and advanced Fe phenotyping protocols.
This will help to identify potential high-Fe parental lines for
discovery of major QTLs and use in breeding programs. Even
though several major effect grain Fe QTLs explained very high
phenotypic variance (>10%) and also gene-specific markers have
been reported in rice (Table 1), there is no successful example of
an Fe-biofortified rice genotype generated by QTL based MAB.

There is a huge potential to use these markers in MAB
and GS to improve the grain Fe concentration in rice.
Because there are multiple QTLs/genes responsible for grain Fe
concentration located on different chromosomes, MAB through
QTL pyramiding, rapid cycle recurrent selection (RCRS), and
genomics assisted selection breeding approaches are worth
trying to develop high-Fe rice. Genome wide association studies
(GWAS) and GS approaches have not been explored much for
improving grain micronutrients, but they hold great promise
for improving the grain Fe concentration of several popular
rice varieties and are highly useful in mainstreaming of rice
Fe breeding. Moreover, genetic engineering and gene editing
technologies have successfully demonstrated their potential
to elevate levels of Fe in rice and improve bioavailability
(Trijatmiko et al., 2016). Breeding programs have been initiated
to transfer high-Fe traits using transgenic approaches into
popular rice varieties through MAB (Paul et al., 2014; Moreno-
Mayano et al., 2016).

Last, it is important to note that development of multiple
nutrient-rich rice varieties with reduced levels of toxic elements,
such as cadmium and arsenic, is also essential for the success of
breeding for healthier rice (Van Der Straeten et al., 2020). Several
advanced breeding materials, such as MAGIC populations,
wild rice–derived introgression lines, and multicross-derived
advanced breeding lines, are being developed, which are valuable
genetic resources for genetic dissection of multiple nutrient
elements (Swamy et al., 2016). Recently IRRI is leading the
mainstream breeding for Zn biofortification, which aims to

incorporate grain Zn as an important component of all
future rice varieties. Similar efforts should be made for Fe
mainstreaming in rice.

POSSIBLE CANDIDATE GENES WITH
KNOWN FUNCTION WITHIN QTL
REGIONS

Among the most promising candidate genes identified, we
highlight transporters from the YSL gene family (Table 2).
Besides the role of OsYSL15 in Fe3+-PS transport (Inoue et al.,
2009; Lee et al., 2009), other members were shown to perform
Fe long-distance transport (Curie et al., 2009). OsYSL9 has a role
in Fe transport to rice grains, specifically in Fe transfer from the
endosperm to the embryo because plants silenced for OsYSL9
show decreased Fe concentrations in embryos but increased in
other seed regions (Senoura et al., 2017). OsYSL16 has been
linked to transport of Cu-NA complexes (Zheng et al., 2012;
Zhang et al., 2018a) and also play a role in Fe long-distance
transport (Kakei et al., 2012). Recently, OsYSL18 was shown to
remobilize Fe from old to young leaves and to developing seeds
(Zhang et al., 2018a). Therefore, the fact that some OsYSL genes
coincide with QTLs is quite promising.

In agreement with a role of long-distance transport in
determining final Fe concentration in seeds, there are QTLs
colocalizing with the two loci that harbor the three NA synthase
(NAS) genes (Table 2). Rice has three NAS genes (two of them are
in tandem) for which the precise roles are not fully understood.
Biofortification efforts using transgenics commonly increase
NAS gene expression, presumably to increase NA-mediated Fe
transport to developing seeds, a strategy that has been fruitful
alone and in combination with other transgenes (Inoue et al.,
2003; Johnson et al., 2011; Lee et al., 2011; Trijatmiko et al.,
2016). It would not be surprising to find that NAS genes are
linked to variation in Fe concentration in rice genotypes. One
NA amino transferase (NAAT) gene (Inoue et al., 2008), which is
involved in PS synthesis, was also found within a QTL (Table 2),
highlighting how changes in metal chelators might be important
for controlling Fe concentration in seeds.

The ZIP gene family also has promising candidate genes
(Table 2). Among them, OsZIP1 was suggested to detoxify Zn,
Cd, and Cu from rice roots but not Fe (Liu et al., 2019b). OsZIP4
was recently shown to function in Zn distribution to tiller buds
and panicles (Mu et al., 2020). OsZIP8 (Lee et al., 2010) and
OsZIP7 (Ricachenevsky et al., 2018; Tan et al., 2019; Gindri et al.,
2020) both are Zn transporters with roles in Zn root-to-shoot
translocation. However, none of these transporters is shown to be
relevant for Fe homeostasis. OsZIP6, which also coincides with
a QTL (Table 2), is shown to transport Fe (Kavitha et al., 2015)
although its physiological role in planta is unknown. Still, given
that Fe and Zn homeostasis do crosstalk and the translocation
mechanisms to seeds seem to be at least partially shared, it is
interesting to pursue whether these genes might explain variation
in rice genotypes for Fe concentration in seeds.

Other interesting candidate genes are from the NRAMP gene
family (Table 2). OsNRAMP1 is part of the Fe deficiency regulon,
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TABLE 2 | Biological functions of QTL linked candidate genes for Fe concentration.

QTL Gene Function References

qFe6.1 AtbZIP19, AtbZIP19 Zinc accumulation in roots. Mediates
the expression of the ZIP

Inaba et al., 2015

qFe12.1 APRT (Os12g0589100) Phosphate ion transmembrane
transporter activity

Zhang et al., 2013

qFe4.1 OsFRO1 (Os04g0578600),
OsFRO2(LOC_Os04g48930)

Fe absorption and homeostasis Shou et al., 2019

qFe1.2, OsZIP1 (Os01g74110) Zinc ion transmembrane transport Liu et al., 2019b

qFe7 Os07g0510100, Os07g0517900, Os07g0518500,
Os07g0519100, Os07g0519300, Os07g0519600,
Os07g0521000, Os07g0529600, Os07g0556200

Metal ion binding, Iron ion binding https://www.uniprot.org/uniprot/Q6Z4B5

OsHMA7 (Os07g0623200) Copper-transporting ATPase http://atgenie.org/gene?id=AT5G44790

qFe1.2, qFe6.1 OsIAA5(LOC_Os01g48444.1) Auxin mediated signaling pathway Liu et al., 2019a

qFe1.2, qFe6.1 OsIAA6 (LOC_Os01g53880.1) Drought stress responses Jung et al., 2015

qFe6.1 OsLCT1(LOC_Os06g38120.1) Involved in zinc and cadmium transport Tian et al., 2019

qFe9.1 OsLysM-RLK10(LOC_Os09g33630.3) OsRLCK276 ATP binding and protein
self-association

https://www.uniprot.org

qFe5.1, qFe3.1 OsMTP1 (Os05g0128400), OsMTP6 (Os03g0346800) Detoxification of zinc ion https://www.uniprot.org/uniprot/A2XZZ6

qFe2.1 OsNAAT1 (Os02g0306401) Biosynthesis of mugineic acid Inoue et al., 2008

qFe11.1 OsNAC5 (Os11g0184900) Transcription factors possibly
controlling expression of metal-related
genes

Sperotto et al., 2009

qFe3.1, qFe7.1 OsNAS1 (Os03g0307300), OsNAS2 (Os03g0307200),
OsNAS3 (Os07g0689600)

Synthesizes nicotianamine, metal
uptake, transport and loading

Inoue et al., 2003; Johnson et al., 2011;
Lee et al., 2011; Trijatmiko et al., 2016

qFe1.1, qFe7.2 OsNRAMP1 (Os07g0258400), OsNRAMP6
(Os01g0503400)

Metal transporter controlling iron
homeostasis

Curie et al., 2000; Peris-Peris et al., 2017

qFe4.1 OsOCP (LOC_Os04g55650.2) Metal uptake, transport, and loading https://shigen.nig.ac.jp/rice/oryzabase/
gene/detail/589.

qFe12.1 OsSWEET1, OsSWEET13 Mediates both low-affinity uptake and
efflux of sugar across the plasma
membrane, haem binding

https://www.uniprot.org/uniprot/Q60EC2

qFe1.2, Fe4.1,
qFe5.1, Fe8.2,

OsYSL1 (LOC_Os01g13710.1), OsYSL4
(LOC_Os05g16290.1), OsYSL8(LOC_Os02g02460.1),
OsYSL9 (LOC_Os04g45860.1), OsYSL16
(LOC_Os04g45900.1),OsYSL17 (LOC_Os08g17830.1)

Transport of nicotianamine-chelated
metals

Ishimaru et al., 2010; Sasaki et al., 2011;
Inoue et al., 2009; Kakei et al., 2012

qFe1.2 Fe5.1,

qFe7.2,qFe8.2,
OsZIP1 (Os01g0972200), OsZIP4 (Os08g0207500),
OsZIP6 (Os05g0164800), OsZIP7 (Os05g0198400),
OsZIP8 (Os07g0232800)

Zinc transporter that may mediate zinc
uptake from the rhizosphere

Ramesh et al., 2003; Ishimaru et al.,
2007; Ricachenevsky et al., 2018; Liu
et al., 2019b

being induced upon low Fe concentration in roots (Wairich
et al., 2019). OsNRAMP1 is very similar to OsNRAMP5, a well-
known transporter for controlling Cd concentrations in seeds.
OsNRAMP1 was recently shown to transport Cd and Mn but
not Fe or As as previously suggested (Chang et al., 2020).
OsNRAMP6, on the other hand, is an Fe and Mn transporter,
which undergoes alternative splicing. Both splicing isoforms can
transport Fe and might be negatively linked to plant immunity
(Peris-Peris et al., 2017).

Finally, we find that OsHMA7 is within a QTL. The OsHMA7
allelic variation was analyzed in recombinant inbred lines
generated from crosses between Madhukar × Swarna, which
show high and low Fe concentration in seeds, respectively
(Kappara et al., 2018). Results show that lines silenced for
OsHMA7 or overexpressing either alleles result in complex
phenotypes with changes in plant size and domestication
traits. However, the over-expression of the allele from the
high-Fe genotype results in increased Fe concentration in

seeds, whereas the overexpression of the allele from the
low-Fe genotype did not (Kappara et al., 2018). Therefore,
OsHMA7, despite not having its molecular function characterized
yet, is a good candidate gene for natural variation in Fe
levels in rice grains.

CONCLUSION

The QTLs and candidate genes reviewed here are a useful
resource for future Fe biofortification efforts. From a practical
standpoint, further QTL pyramiding using robust regions
associated with high Fe concentrations might be feasible because
many studies now support some of the same regions as linked to
high Fe concentration in seeds. Still, efforts to identify causative
genes and specific mutations linked to Fe accumulation in rice
seeds would improve our understanding of the genetic basis
for such variation, indicate which mechanisms are amenable
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to manipulation in rice plants for increasing Fe in seeds, and
finally allow precise introgression of such genetic variants into
elite genotypes using markers linked to causative mutations of
the desired phenotypes. The information provided here will help
future studies focused on such aims.
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