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Substantial contribution of genetic
variation in the expression of transcription
factors to phenotypic variation revealed by
eRD-GWAS
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Abstract

Background: There are significant limitations in existing methods for the genome-wide identification of genes
whose expression patterns affect traits.

Results: The transcriptomes of five tissues from 27 genetically diverse maize inbred lines were deeply sequenced to
identify genes exhibiting high and low levels of expression variation across tissues or genotypes. Transcription
factors are enriched among genes with the most variation in expression across tissues, as well as among genes
with higher-than-median levels of variation in expression across genotypes. In contrast, transcription factors are
depleted among genes whose expression is either highly stable or highly variable across genotypes. We developed
a Bayesian-based method for genome-wide association studies (GWAS) in which RNA-seq-based measures of
transcript accumulation are used as explanatory variables (eRD-GWAS). The ability of eRD-GWAS to identify true
associations between gene expression variation and phenotypic diversity is supported by analyses of RNA co-
expression networks, protein–protein interaction networks, and gene regulatory networks. Genes associated with 13
traits were identified using eRD-GWAS on a panel of 369 maize inbred lines. Predicted functions of many of the
resulting trait-associated genes are consistent with the analyzed traits. Importantly, transcription factors are
significantly enriched among trait-associated genes identified with eRD-GWAS.

Conclusions: eRD-GWAS is a powerful tool for associating genes with traits and is complementary to SNP-based
GWAS. Our eRD-GWAS results are consistent with the hypothesis that genetic variation in transcription factor
expression contributes substantially to phenotypic diversity.
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Background
Many projects are underway to identify loci that contrib-
ute to traits, and the methods to do so remain under de-
velopment [1]. Most commonly, associations are sought
between genetic variants (e.g., SNPs) and variation in trait
values via genome-wide association studies (GWAS). Typ-
ical approaches to GWAS exploit linkage disequilibrium

(LD) between genetic variants such as SNPs and loci that
directly affect traits of interest. There are two main ap-
proaches for identifying such associations, mixed linear
models (MLM) and Bayesian-based approaches.
MLM solutions have been developed to overcome the

confounding effects of population structure and the re-
latedness among individuals, and provide increased com-
putational efficiency and statistical power [2–5]. Typical
MLM solutions estimate effects based on single markers
and require the use of covariances to account for popu-
lation structure. However, these approaches for control-
ling for population structure also decrease statistical
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power [6]. In contrast, Bayesian methods apply multiple
variable regression models combined with prior distribu-
tions and Markov chain Monte Carlo (MCMC) sampling
to generate posterior distributions [7–9]. Meuwissen et al.
[8] first proposed the methods of ridge-regression BLUP,
BayesA, and BayesB. BayesB assumes marker effects have
identical and independent univariate t-distributions and
assume that a designated portion of markers have no ef-
fect. BayesC is similar to BayesB, but marker effects are
assumed to have a common variance [10].
Genes with regulatory functions often exhibit high

levels of expression variation across species [11, 12]
compared to metabolism-related genes [13]. Several
studies have revealed that, among primates, transcription
factors (TFs) can evolve rapidly in response to selection
[14–16]. Within species, genes exhibit different levels of
variation in expression among individuals and alterations
in the regulation of the expression of TFs can contribute
to novel phenotypes [17], such as branching in maize
[18] or pelvic loss in three-spined stickleback fish [19].
Because variation in the regulation of gene expression

contributes to phenotypic diversity [20], efforts have been
made to identify genetic variants associated with variation
in transcript accumulation, i.e., expression quantitative
trait locus (eQTL) analyses [21]. Genetic variants detected
via eQTL analysis can act in cis or in trans. The relative
contributions of cis- and trans-acting eQTLs on pheno-
typic variation are unknown. Cis-variation is often consid-
ered a key mechanism in creating phenotypic novelty [22]
and contributes to adaptive evolution [23–25]. Indeed, cis-
effects have played a major role on gene expression during
the domestication of maize [22]. It is worth noting, how-
ever, that due to limitations in statistical power it is typic-
ally more difficult to detect trans-acting eQTLs than cis-
acting eQTLs [26]. Even so, many trans-eQTLs have been
identified in maize [26, 27] and other species [28, 29].
Maize is one of the most genetically and phenotypic-

ally diverse species [30] and has a rich collection of gen-
etic resources [31], making it an important model
system. Because maize exhibits high levels of SNP diver-
sity and low LD, it exhibits high statistical power and
resolution in GWAS [32]. We used this model species to
test the role of variation in the expression of TFs and
more generally variation in transcript accumulation on
phenotypic variation. Following deep RNA-seq analysis
of multiple tissues from diverse inbred lines we estab-
lished that TFs are depleted among genes that exhibit
high levels of expression variation across genotypes.
Next, we developed a Bayesian-based statistical method
for using RNA-seq measurements of transcript accumu-
lation as the explanatory variables in GWAS and thereby
directly demonstrate an association between variation in
transcript accumulation of TFs and phenotypic variation
for a diverse collection of traits.

Results
RNA-seq was conducted on mRNA extracted from mul-
tiple maize organs (seedling shoot apex, immature unpol-
linated ears, immature tassels, seedling shoots and roots)
collected from the 27 inbred founders of the nested asso-
ciation mapping (NAM) population. Six billion raw 101-
bp reads were generated, trimmed, filtered, and aligned to
the B73 reference genome (“Methods”); 2.9 billion non-
stacking uniquely aligned reads were used to assay tran-
script accumulation levels (Additional file 1).

Identification of genes that are variably or stably
expressed across tissues
To identify genes that exhibit extreme levels of variation
in transcript accumulation across tissues, a series of model
selection procedures was performed. Ultimately, we se-
lected negative binomial distributions to model the distri-
butions of read counts for genes, and the scaled log of
over-dispersion parameters of quasi-negative binomial
generalized linear models to minimize the correlation be-
tween expression variation and expression levels
(“Methods”). Henceforth, the scaled log10 over-dispersion
parameters will be termed “variation in gene expression”.
Of 39,656 high-confidence “filtered-gene set” (FGS)

genes, 29,609 have sufficient levels of transcript accumula-
tion (“Methods”) to be used in subsequent analyses. The
distribution of variation of gene expression across tissues
was a left-skewed distribution (Additional file 2: Figure
S1a). We defined the upper and lower 2.5% percentiles of
this distribution as tissue variable expression (T-VE) genes
(N = 741 genes) and tissue stable expression (T-SE) genes
(N = 741) (Additional file 2: Figure S1a). TFs as a group
were enriched among T-VE genes (P value = 0.008) and
homeobox (P value = 0.03) and MADS box families of TFs
(P value = 5 × 10−5) were specifically enriched among T-
VE genes (“Methods”). In contrast, TFs were depleted
among T-SE genes (P value = 0.0005; Additional file 2: Fig-
ure S1b and Additional file 3c).

Identification of genes that are variably or stably
expressed across genotypes
A similar approach was used to identify genotype vari-
able expression and genotype stable expression (G-VE
and G-SE) genes. The distribution of variation in gene
expression across genotypes demonstrated a left-skewed
distribution (Additional file 2: Figure S2a). Although TFs
were enriched among genes that exhibited higher than
median levels of variation in gene expression (P value =
3 × 10−5), TFs were underrepresented among both G-VE
and G-SE genes (P values = 0.002 and = 0.046, respect-
ively; Additional file 2: Figure S2b). Specifically, although
46 TFs would be expected among the G-VE genes by
chance, only 22 were observed (Additional file 4). Simi-
lar results were obtained when the G-VE and G-SE
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genes were defined as being the upper and lower 5 and
10% of all genes.
Arabidopsis thaliana RNA-seq data generated by

Kawakatsu et al. [33] (N = 727 genotypes) were analyzed
using similar approaches. Consistent with our maize re-
sults, TFs were depleted among G-VE (P value = 1.0 × 10
−5) and G-SE (P value = 0.004) genes in Arabidopsis
(Additional file 2: Figure S3). As was observed for maize,
Arabidopsis TFs were enriched among those genes that
exhibit higher than median levels of expression variation
across genotypes (P value = 4 × 10−8).

Correlation of variation in maize gene expression across
genotypes and tissues
A linear trend was observed between tissue-wise and
genotype-wise variation in gene expression (r2 = 0.64, P
value ~ 2 × 10−16; Additional file 2: Figure S4). Based on
whether a gene demonstrated stable or variable variation of
gene expression across tissues and genotypes, maize genes
could be classified into nine categories (Additional file 3).
The 520 T-VE genes that are neither G-VE nor G-SE

are significantly enriched in TFs overall (P value = 9 × 10
−5) and enriched in several specific TF families, including
Homeobox/HOX (P value = 0.02), MADS (P value =
2.6 × 10−5), and Squamosa promoter binding protein
(SPB; P value = 0.03) genes (Additional file 3e). Gener-
ally, HOX genes function in organ identity [34] and
SBPs function in phase change [35]. In contrast, the 330
genes classified as being both T-SE and G-SE are de-
pleted for TFs (P value = 0.006; Additional file 4).

Expression read depth genome-wide association study
Based on the findings that TFs exhibited moderate vari-
ation in expression across genotypes, we were interested
in testing the contribution of variation in transcript ac-
cumulation levels of TFs to phenotypic diversity. To dir-
ectly test this association, we developed a Bayesian-
based statistical approach for using transcript accumula-
tion as the explanatory variable during GWAS.
Typically, a GWAS is conducted using SNP genotypes

as explanatory variables. We reasoned that using tran-
script accumulation as an explanatory variable for
GWAS would have certain advantages in that gene ex-
pression levels potentially integrate the effects from mul-
tiple loci that contribute to phenotype variation. To the
extent that these hidden multiple locus effects poorly ex-
plained by single genotyped SNPs, expression read depth
genome-wide association studies (eRD-GWAS) may bet-
ter explain variation in trait values. eRD-GWAS also
have the potential to integrate the effects of epigenetic
variation that contributes to variation in gene expression
and other traits. To test the hypothesis that variation in
transcript accumulation can explain diversity in trait
values that is missed by traditional GWAS, we analyzed

a set of lines which had been both genotyped and phe-
notyped and for which RNA-seq data were available.
The SAM (shoot apical meristem) diversity panel con-

sists 369 diverse inbred lines, including commercially
relevant inbreds with expired plant variety protection
(PVP) [36]. We have genotyped this panel with 1.28 mil-
lion SNPs [36]. In addition, we conducted RNA-seq on
apex tissue (which includes the SAM) from each of these
inbreds [36]. Using these RNA-seq data we calculated
RPKM values for each of the 39,656 FGS genes in the
maize genome for each of the inbreds in the SAM panel.
Each of the inbreds in the SAM diversity panel had pre-

viously been phenotyped for multiple traits related to the
shoot apical meristem [37], i.e., volume, height, parabola
radius, arc length, and SAM surface area [36], and a var-
iety of other traits, including the mean node number [36],
ear height, and days to anthesis (DTA) [38]. During the
current study we phenotyped these inbreds for five add-
itional traits, i.e., stalk circumference, stalk cross-sectional
area, maximum and minimum stalk diameter, and number
of nodes with brace roots. These traits exhibit varying de-
grees of correlation (Additional file 2: Figure S5), some of
which have been reported previously [39].
To test the hypothesis that eRD-GWAS can identify

loci that contribute to variation in traits that are not
identified by traditional SNP-based GWAS, we analyzed
all five SAM-related and eight other traits using both
SNP genotypes and RPKM values as explanatory vari-
ables (“Methods”).
Typically, GWAS software that relies on MLMs is de-

signed to use SNPs as the explanatory variables. We
elected to use a BayesB-based approach to conduct
eRD-GWAS in which RPKM values (expression data)
served as the explanatory variables. Our rationale for
selecting a Bayesian approach to GWAS is described in
the “Methods”. The BayesB model is widely used in gen-
omic selection. Instead of predicting phenotype, we used
model frequency (the frequency with which a gene was
included in a model) as a measure of the strength of the
relationship between that gene’s expression pattern and
the phenotype of interest. To validate the BayesB ap-
proach we repeated Leiboff et al.’s [36] SNP-based ana-
lysis of SAM volume using a MLM approach and in
parallel conducted a SNP-based GWAS for SAM volume
using a BayesB approach (“Methods”). As expected the
results we obtained from our SNP-based GWAS using
the MLM approach (Fig. 1) were very similar to those of
Leiboff et al. [36]. The upper and middle panels of Fig. 1
provide results from the SNP-based MLM GWAS and
the SNP-based BayesB GWAS. The 14 significant signals
that overlap between the two approaches are indicated
by vertical dashed lines on chromosomes 1, 2, 6, 7, 9,
and 10. Nine of these 14 SNPs that were detected via
both approaches are located in or near genes that have
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been shown previously to be associated with SAM vol-
ume [36]. If we consider SNPs present in the same gen-
omic regions (to account for LD), 19 of the 54 SNPs
detected by SNP-MLM were present in 30-kb windows
centered on SNPs detected by SNP-BayesB. Similarly, 15
of 53 SNPs detected by SNP-BayesB were present in 30-
kb windows centered on SNPs detected by SNP-MLM.
These results established that the BayesB approach iden-
tified a significant subset of those SNPs identified by
MLM GWAS, but that the BayesB approach also identi-
fied signals not identified by the MLM approach.
Based on these results we used BayesB-based eRD-

GWAS to identify genes whose variation in transcript
accumulation is associated with diversity in SAM vol-
ume. Approximately 500 genes (lower panel of Fig. 1)

exceed the arbitrarily selected model frequency cutoff of
0.02 in the eRD-GWAS. If we search for candidate
genes, GRMZM2G140721 is detected by both the SNP-
based BayesB and eRD-GWAS. GRMZM2G140721 is a
predicted transcriptional factor in Arabidopsis, rice, and
maize. In total, 120 genes identified via eRD-GWAS (i.e.,
eRD genes) were not located within 30-kb windows cen-
tered on the chromosomal positions of SNPs identified
via either SNP-based GWAS approach (MLM or Bayes-
ian). Even so, some of these genes detected via eRD-
GWAS but not by SNP-based GWAS have previously
been demonstrated to affect the morphology of the
SAM. For example, ZEA CENTRORADIALIS4 (ZCN4)
functions in the maintenance of indeterminate shoot
meristem, thereby affecting the transition to an

Fig. 1 Manhattan plots of three types of GWAS results. The upper panel reports result from a SNP-based MLM implemented in GAPIT. Only signals with P
values smaller than 1.0 × 10−7 are presented. The middle and lower panels report results from the SNP-based BayesB analysis and eRD-GWAS, respectively.
The model frequency cutoffs for SNP BayesB and eRD-GWAS are 0.01 and 0.02, respectively (“Methods”). Overlapping associated SNPs in the upper two
panels are indicated by dashed lines. Note not all overlapping SNPs can be distinguished in this plot. Gene IDs of some trait associated genes (“Methods”)
are indicated
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inflorescence meristem [40] and BRANCH ANGLE DE-
FECTIVE 1 (BAD1) [40] is a TCP class II gene that is
expressed in inflorescence meristems and lateral organs
where it functions to promote cell proliferation.
All GWAS provide lists of genes that are hypothesized

to be associated with traits of interest. To assay the accur-
acy of the gene–trait associations from eRD-GWAS we
performed a series of analyses, including tenfold cross-
validation, eQTL analyses of eRD-GWAS genes, tests for
the enrichment of eRD-GWAS genes within specific
nodes of RNA co-expression networks, protein–protein
interaction networks, and gene regulatory networks.

Tenfold cross-validation
Tenfold cross validation is a technique used for assessing
the accuracy of prediction models [41]. Our tenfold
cross-validation analyses of the results of eRD-GWAS
(“Methods”) yielded accuracies of 0.41–0.76, indicating
that eRD-GWAS accurately detects associations between
variation in transcript accumulation and multiple traits
(Additional file 5). Based on comparisons to similar
cross-validation analyses conducted using results from
SNP BayesB, the accuracies of the two approaches are
similar for multiple traits (Additional file 5).

eQTL for eRD-GWAS-detected genes (eRD genes)
If eRD-GWAS is accurately identifying genes that con-
tribute to variation in a trait, we would expect that
eQTLs that act in trans to regulate the expression of
eRD genes may also be associated with variation in that
trait. Hence, we conducted an eQTL analysis using an
MLM approach (“Methods”) for the five eRD genes asso-
ciated with the DTA trait that had the highest model fre-
quencies. The resulting eQTLs were compared to the
eRD genes and also to the genes associated with the
DTA trait via BayesB GWAS (Additional file 6). Hyper-
geometric analyses (“Methods”) established that the
eQTLs were enriched in genes associated with variation
in the DTA trait. To ensure this phenomenon was ro-
bust across traits, we used the same strategy on multiple
traits (Additional file 7). The results were consistent
with our hypothesis, i.e., that the eQTLs associated with
specific eRD genes are enriched overall in eRD genes.
This result provides support for the view that eRD-
GWAS accurately identifies genes whose expression is
associated with variation in trait values.

eRD-GWAS enriched in an RNA co-expression network
To enhance the power of this analysis we first con-
structed an RNA co-expression network using WGCNA
[42] using the RNA-seq data from the SAM diversity
panel. We then determined gene ontology (GO) terms
that were enriched among the genes within specific
modules of the co-expression network (Table 1). The

modules that were enriched for eRD genes associated
with the DTA trait were also enriched for a variety of
GO categories. The “honeydew” module was enriched
for the GO category “maintenance of floral meristem
identity”, which would appear to be relevant to the DTA
trait. Other modules were enriched for categories that
the literature reported may be relevant to the DTA trait,
such as “metal ion transport”, “response to nitrate”, and
“NAD(P) metabolic” [43–45].

eRD-GWAS in protein–protein interaction networks
Protein–protein interaction networks (PPINs) can be
used to identify proteins (and genes) that contribute to
phenotypes and thereby help elucidate complex genetic
mechanisms [46]. We downloaded maize PPIN data
from the maize PPIM [47], clustered proteins into net-
work communities, and then tested whether eRD genes
were enriched in network communities. As was the case
for the enrichment tests within the RNA co-expression
network, eRD genes were significantly enriched
(“Methods”) in GO categories associated with the DTA
trait among three of the 12 network communities that
contained more than one eRD gene (Table 2 and Fig. 2).
This finding provides further evidence that eRD-GWAS
can identify biologically relevant gene–trait associations.

eRD genes in gene regulatory networks
Unlike co-expression networks, a gene regulatory net-
work (GRN) is composed of directed edges that indicate
biological relationships between pairs of nodes. For ex-
ample, regulators are predicted to activate or suppress
downstream genes. We examined the characteristics of
our eRD genes within maize GRNs constructed using
RNA-seq (23 tissues) or proteomic (33 tissues) data [48];
eRD genes were enriched among regulators in both the
RNA- and protein-based GRNs (Fig. 3 a–c). Sets of
eRD-GWAS genes selected using model frequency cut-
offs larger than 0.03 have enrichment test P values
smaller than 0.05, indicating that the targets of eRD-
GWAS regulators are themselves enriched in eRD-
GWAS genes (Fig. 3a–c). These results indicate that
eRD-GWAS can identify both GRN regulators and their
downstream targets.

TFs are enriched among trait-associated genes from eRD-
GWAS
As discussed earlier, TFs are enriched among genes that
exhibit a higher than median level of variation in gene
expression across genotypes. To test the hypothesis that
the variation in expression of TFs affects phenotype, we
conducted enrichment tests for TFs among eRD genes
associated with 13 phenotypes using various model fre-
quency cutoffs (Fig. 3d–g; Additional file 2: Figure S6).
For 11/13 traits, as the stringency of model frequency
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cutoffs was increased, the enrichment of TFs among the
eRD-GWAS genes also increased. This result demon-
strates the importance of variation in the expression of
TFs on phenotypic variation.

Discussion
We were interested in comparing the variation in ex-
pression of TFs across tissues and genotypes to that of
other genes. Using an RNA-seq data set derived from
five tissues and 27 genotypes, we identified genes that

exhibit low and high levels of expression variation across
tissues (T-VE and T-SE genes) and genotypes (G-SE and
G-VE). T-VE genes are enriched in TFs, and specifically
enriched for Homeobox, MADS and Squamosa pro-
moter binding (SPB) proteins. In contrast, T-SE genes
are depleted for TFs.
In contrast to what was observed across multiple tis-

sues, TFs were depleted among the G-VE and G-SE
genes of both maize and Arabidopsis. Even so, in both
species, TFs were enriched among those genes that ex-
hibit higher than median levels of variation in gene ex-
pression. Interestingly, even though there is positive
correlation between maize genes that exhibit high levels
of expression variation across genotypes and tissues, TFs
are not enriched among G-VE genes that are also T-VE.
Based on these findings we hypothesize that extreme
variation in expression of TFs across genotypes is con-
strained by selection against the extreme phenotypic
variation that would be expected to arise via the action
of TFs with extreme expression levels upon multiple
downstream target genes. Similarly, because the NAM
founders exhibit substantial phenotypic diversity, the de-
pletion of TFs among the G-SE genes is consistent with
a role of TFs in contributing to phenotypic diversity.

Overview of eRD-GWAS
To test the hypothesis that variation in the expression of
TFs (and other genes) across genotypes contributes to
phenotypic variation, we developed eRD-GWAS, a stat-
istical method that permits gene expression level to be
tested as an explanatory variable during GWAS.
Using eRD-GWAS we detected several hundreds of

trait-associated genes for each of multiple traits included
in this study. The results of tenfold cross-validation indi-
cated that the predicted phenotypes based on genes de-
tected via eRD-GWAS are highly correlated with
empirically measured phenotypes. In addition, many
trait-associated genes have annotations consistent with
their presumed roles in regulating the associated traits
(Additional file 7). Hence, we concluded that the eRD-
GWAS pipeline can successfully identify associations be-
tween variation in gene expression and diversity in
phenotype. eQTL analyses of eRD-GWAS genes, tests
for the enrichment of eRD-GWAS genes within specific
nodes of RNA co-expression networks, PPINs, and
GRNs provided further support for this conclusion.

Challenges associated with GWAS
GWAS strategies identify genes that putatively contrib-
ute to variation in phenotypes. However, false positive
results remain a challenge in GWAS [49]. The use of
other types of genomic data in combination with SNP
data has the potential to decrease biases and increase
the power to detect true associations in GWAS. For

Table 1 GO enrichment tests of RNA co-expression modules
containing multiple eRD genes for the DTA trait

Module
name

GO term
enrichment of
module

Number of eRD
genes within
module
(percentage of eRD
genes in module)

Log2 odds
ratio for
eRD genes
in module

Thistle3 Metal ion transport;
transferring
phosphorus-
containing groups;
ATP binding

20 (54.1%) 9.17**

Navajowhite2 NAD(P) metabolic 18 (34.6%) 8.03**

Firebrick4 Nitrate transport;
magnesium ion
binding

15 (35.7%) 8.38**

Palevioletred3 Terpene synthase;
regulation of
transcription;
response to nitrate

6 (11.1%) 6.33**

Honeydew Cell wall
organization;
maintenance of
floral meristem

4 (11.1%) 6.92**

** P value of enrichment test < 0.01

Table 2 GO enrichment among protein–protein interaction
network communities that contain multiple eRD genes for the
DTA trait

Community GO term
enrichment of
community

Number of eRD
genes within community
percentage of eRD
genes in community)

Log2 odds
ratio for eRD
genes in
xcommunity

10 ATP biosynthesis
process; metal
ion transport

8 (7.41%) 4.75**

6 MADS-gene
family; floral
meristem
maintain

5 (8.93%) 5.96**

4 Oxidation-
reduction
process; nitrate
assimilation;
steroid 22-alpha
hydroxylase activ-
ity (BR)

12 (4.67%) 2.58*

* P value of enrichment test < 0.05
** P value of enrichment test < 0.01
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example, efforts have been made to make use of eQTL
results to increase the accuracy of GWAS [50, 51]. Al-
though including eQTL results has the potential to de-
crease the rate of false positive associations, this
approach can also result in elevated rates of false nega-
tive calls [49].
An alternative approach which we employed in this

study is to use gene expression levels directly as explana-
tory variables for GWAS. This approach substantially re-
duces the multiple testing problem by using as
explanatory variables expression data from ~ 40,000
maize genes vs. millions of available SNPs. This reduc-
tion in the number of explanatory variables also reduces
the computational cost of eRD-GWAS compared to
traditional SNP-based approaches.
Another group has shown that RNA expression pat-

terns can predict human disease [20]. However, their
statistical framework was intolerant of missing data
which, required that transcriptomic data be imputed
based on SNP data. This imputation would be expected
to decrease accuracy. Further, their approach is limited
to binary phenotypes (e.g., healthy vs. diseased). Jin et al.
[52] also attempted to associate phenotypes with expres-
sion patterns. For a given gene, they classified lines as ei-
ther being expressed or not based on RNA-seq data.
Lines having intermediate levels of expression were
treated as missing data. The conversion of continuous
gene expression data into a binary classification scheme
would be expected to decrease statistical power [53]. Be-
cause the data of Jin et al. were analyzed using an MLM

approach, the limitations discussed in the “Background”
apply. In contrast to the method of Jin et al., eRD-
GWAS does not require that lines with intermediate ex-
pression levels be treated as missing data. In addition,
our statistical framework is not limited to binary pheno-
types as is the case for Gamazon et al. [20]. This is im-
portant because most important traits exhibit
quantitative variation.
Because eRD-GWAS directly associates candidate

genes with phenotypes, it eliminates the need to hunt
for causative genes within windows surrounding trait-
associated SNPs. One potential concern with eRD-
GWAS is whether LD creates false trait associations be-
tween the expression of a gene that is simply linked to
the causative gene. The Bayesian framework employed
by eRD-GWAS functions to distinguish the effects of LD
loci; our data suggest that this is in fact true not only for
SNPs but also for expression data. For example, even
though the expression patterns of various alleles of
ZmMADS69 are correlated with the expression patterns
of other genes within the adjacent 1-Mb window (as well
as genes across the genome), eRD-GWAS still could de-
tect ZmMADS69 as the gene with the highest model fre-
quency for flowering time (Additional file 2: Figure S7).
Before using expression data to conduct eRD-GWAS,

it is necessary to align RNA-seq reads to a reference
genome. The substantial amount of SNPs [36] and struc-
tural polymorphism among maize haplotypes [54] may
result in alignment biases that distort RPKM values and
hence the power of eRD-GWAS. Although this bias did

Fig. 2 Visualization of a protein–protein interaction network that contains eRD genes. Highlighted communities that contain more than one eRD
gene and in which eRD genes are statistically enriched are highlighted
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Fig. 3 Enrichment testing for eRD genes. a–c Enrichment of “regulators” among eRD genes associated with the DTA trait at various model frequency cutoffs. a, b
Numbers of eRD genes associated with the DTA trait that are defined as regulators of RNA- and protein-based GRNs by Walley et al. [48]. c Numbers of eRD genes
that are themselves downstream of eRD genes that are regulators from the RNA-based GRNs. d–g Enrichment of TFs among eRD genes for various traits at various
model frequencies. The number of eRD genes above indicated model frequency cutoffs are shown within each plot. The red dashed lines indicate P values of 0.05
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not interfere with our ability to detect trait-associated
loci, the use of new alignment approaches that better
control for polymorphisms [55] may provide additional
power to eRD-GWAS.
This study included a direct comparison between the

use of SNPs and expression data as explanatory variables
within a common statistical framework. Our results es-
tablish that the two types of explanatory variables pro-
vide different association signals, such that some signals
are detected by only one type of explanatory variable.
This result argues that eRD-GWAS are complementary
with SNP-based GWAS.
The Bayesian approach requires the selection of a

model frequency cutoff which, unlike the q-value associ-
ated with MLMs, is in some sense arbitrary. If our se-
lected model frequency cutoff (0.02) had been too
relaxed, it is unlikely that strong statistical evidence for
module-specific enrichment within the co-expression
and PPINs would have been observed. Nor would we
have been likely to observe a statistically significant en-
richment of eQTLs for eRD genes among the eRD genes.
If the selected model frequency cutoff were more strin-
gent (i.e., if a larger model frequency), fewer genes
would have been called as being associated with a given
phenotype. This relationship is explored in Fig. 3 and
Additional file 2: Figure S6, which demonstrate that the
enrichment of TFs among the eRD genes for multiple
traits is robust across a wide range of model frequency
cutoffs, but that the enrichment P value can become
more significant at increasingly stringent model fre-
quency cutoffs. This finding is consistent with the hy-
pothesis that a more stringent cutoff would result in a
higher proportion of true positives, although presumably
at the cost of more false negatives.

Transcription factors contribute significantly to
phenotypic variation
Variation in gene expression contributes to phenotypic
variation [56] upon which natural and artificial selection
can act. The mechanisms that regulate variation in gene
expression can act in cis (e.g., transcription binding sites)
or in trans (e.g., TFs). It has, for example, been shown
that variants located upstream of maize genes are
enriched in GWAS analyses of multiple morphological
traits [57]. Similarly, GWAS signals are enriched near
human TF binding sites [58]. These findings are at least
consistent with the hypothesis that variation in TF bind-
ing sites contributes to phenotypic variation.
It is also likely that variation in the expression of TFs

per se can contribute to phenotypic variation, and in-
deed specific cases of this type have been identified [18,
59]. Previous case studies have revealed roles for TFs in
phenotypic evolution [60, 61]. In addition, genome-wide
comparative genomics studies among primates have

demonstrated that genes responsible for directional/di-
versifying selection are often TFs [11, 12, 62, 63]. As a
step towards testing the hypothesis that TFs contribute
substantially to phenotypic variation in maize, we dem-
onstrated that TFs exhibit elevated levels of variation in
expression across genotypes. More directly, using our
newly developed eRD-GWAS method we established
that genes associated with phenotypic variation for mul-
tiple traits are enriched in TFs, demonstrating that vari-
ation in the expression of TFs contributes substantially
to phenotypic diversity in maize.

Conclusions
TFs are enriched among genes with the most variation
in expression across tissues and among genes with
higher than median levels of variation in expression
across genotypes. To better understand the relationship
between variation in gene expression on phenotypes, we
developed eRD-GWAS, which identifies associations be-
tween variation in gene expression and variation in phe-
notypes or traits. The enrichment of TFs among trait-
associated genes identified via eRD-GWAS highlights
the impact of expression variation on phenotypes. eRD-
GWAS is complementary with SNP-based GWAS.

Methods
Tissue collection, library preparation, and RNA
sequencing
Maize shoot apex, immature, unpollinated ears, imma-
ture tassels, and seedling shoots and roots of 27 NAM
founders were collected for RNA extraction (Additional
file 1). There exists a universal dilemma of sampling tis-
sues from genotypes with different maturities. One must
either sample from a common environment (same har-
vest date) and accept variation in developmental stage at
harvest, or harvest at a common developmental stage
and accept the risk of differences in micro-environment
at harvest. For the NAM RNA-Seq experiment we
elected to use the second approach.
Ear and tassel were harvested from greenhouse-grown

plants with the exception of Ms71 ears, which were har-
vested from field-grown plants. Immature ear tips were
harvested ~ 68 days after planting (depending on the
maturity rate of each line). At this stage ear ranged from
0.5 to 3 inches; only the top one-third to one-fifth of
each ear was collected. Tassels were harvested prior to
tassel emergence, i.e., ~ 60 days after planting. Three
healthy plants were sampled and pooled per genotype
prior to homogenization in liquid nitrogen and RNA ex-
traction. Maize shoot apexes were collected by pooling
three to six 14-day-old seedlings from each NAM
founder. Seedlings were grown by planting ten kernels
of each line in germination paper which was rolled and
placed in a tall plastic beaker filled with approximately 3
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inches of tap water. Beakers were covered with “cling-
wrap” and placed in a dark 28 °C incubator for approxi-
mately 4–5 days, when shoots emerged from the ger-
mination paper. Two to three inches of the shoot and
root were cut and frozen in liquid nitrogen for immedi-
ate homogenization and extraction. Samples from three
plants of each inbred were pooled for homogenization.
For the SAM diversity panel, all plants were grown and
sampled according to as in Leiboff et al. [36].
All RNA extractions were performed with the Qiagen

RNeasy kit according to the manufacturer’s protocol.
RNA was eluted twice with 30 μl RNase free water.
Indexed RNA-seq libraries were prepared using the Illu-
mina protocol outlined in the “TruSeq RNA Sample
Preparation Guide” (part number 15008136 rev. A, No-
vember 2010). Maize shoot apex RNA was sequenced
with an Illumina Genome Analyzer II instrument while
ear, root, shoot, and tassel RNA were sequenced with an
Illumina HiSeq 2000 instrument.

RNA-seq reads: processing, alignment, and SNP calling
Quality trimming, alignment to the B73 reference
genome, and SNP calling were as described by Leiboff
et al. [36].
Alignment coordinates of confidently (uniquely)

mapped reads within the same chromosomal regions
were compared for potential read stacks caused by PCR
artifacts during sequencing. If a stack consisting of two
or more reads with identical start and end positions
were detected, only a single read with best alignment
score (least number of mismatches and least number of
ambiguous bases) was selected for variant detection. If
the distance from the left base pair to right base pair
was more than 12,000 bp, the reads/read pairs were fur-
ther removed. Reads with non-canonical splice sites
were also removed.

Discovery and annotation of expression variable/stable
genes
Read counts are discrete and usually exhibit correlation
between mean and variance [64]. Proper models, tech-
niques, and summary statistics are essential to evaluate
expression variation. To reduce ascertainment bias be-
tween expression level and expression variability, Pear-
son correlations were computed between expression
level and each of several summary statistics (Additional
file 2: Figure S8), including over-dispersion parameter of
the Poisson model [65], mean coefficient of variance
based on the Poisson model, deviance of the negative bi-
nomial model [66], and the over-dispersion parameter of
the quasi-negative binomial model [65]. The R packages
edgeR (version 3.14.0) [67] and QuasiSeq (version 1.0-8)
[65] were used to estimate dispersion parameters and
over-dispersion parameters of quasi-negative binomial

GLMs (some graphical display used ggplot2, version
2.2.1 [68]). Full models were fitted when comparing
Poisson, negative binomial, and quasi-negative binomial
GLMs, as follows:

log λijk
� � ¼ μþ αi þ βj þ oijk

Where λijk is mean fragment count for genotype i, tis-
sue j, and observation k, μ is an intercept parameter, αi
is an effect of genotype i, βj is an effect of tissue j, and
oijk is the normalization offset for genotype i, tissue j,
and observation k.
Of the four measures of variation discussed above, the

over-dispersion parameter of quasi-negative binomial
model, which measures the deviation of a gene’s read
counts from the best-fitting negative binomial distribu-
tion, had the smallest correlation with expression level,
and was thus used to measure expression variability
(Additional file 2: Figure S8). The over-dispersion par-
ameter Φ of quasi-negative binomial GLMs is:

Φ ¼ Var Yð Þ
κE Yð Þ2 þ E Yð Þ

where Y is fragment count for a gene, Var(Y) and E(Y)
are the variance and expectation of Y, respectively, and κ
is the dispersion parameter of a negative binomial GLM.
Tissue-wise over-dispersion parameters were estimated
with genotype as the only factor in the model, while
genotype-wise over-dispersion parameters were esti-
mated treating tissue as the only factor in the model. A
total of 29,609 genes with mean read counts ≥ 5 and
numbers of samples with zero read counts ≤ 2 were in-
cluded in the analysis. Z-score normalization was per-
formed against log transformed over-dispersion
parameter estimates, where:

Z ¼ log Φ̂
� �

−Ê log Φð Þð Þ
ffiffiffiffiffiffiffiffiffi
dVar

p
log Φð Þð Þ

Upper and lower 0.025 quantiles of transformed nor-
malized distributions were used to define highly variable
and highly stable genes. MAPMAN annotation of maize
filter gene sets (5b.61) was used to perform functional
enrichment tests [69]. Fisher exact test was performed
with the Benjamini–Hochberg method controlling false
discovery rates (FDRs).

Collection of phenotypic data
Phenotypic trait data were collected from a panel of 369
diverse inbreds designated as the “SAM panel” [36]. Data
were collected from three plants per location in two
fields grown in Ames, Iowa during the summer of 2014.
Prior to data collection leaf sheaths and brace roots (if
present) were removed. Measured traits included
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maximum and minimum stalk diameters, stalk circumfer-
ence, stalk cross-sectional area, total node number, and
number of nodes with brace roots (Additional file 8). Add-
itional data from the SAM panel (or members of it) were
obtained from the literature. For example, several traits as-
sociated with the SAM, including SAM height, radius, sur-
face area, volume, and arc length from P1 notch to apex,
were obtained from [36]. Ear height and DTA data were
obtained from [38]. Phenotypic regression and phenotypic
density distributions were conducted using the R “corr-
gram” package version 1.10 [70].

Mixed linear model GWAS
GAPIT version 3.35 [71] was used for MLM GWAS.
The model implemented in GAPIT was:

y ¼ Wνþ Xβþ Zυþ e

where y is the phenotype value, ν and β are unknown
fixed effect vectors, and υ is a vector of random effects
that follows a multivariable normal distribution with a null
mean and a covariance matrix of G. G = Kσ2a, where K is
the kinship matrix [2]. e follows a normal distribution with
null mean and σ2e I variance. In general W, X, and Z are
the matrices containing principal component scores that
account for population structure, known covariates, and
SNP genotypes, respectively. In our case, W contains
scores for the first three principal components, X was not
used because we had no known covariates to adjust for,
and Z had data on 1.28 million SNPs. Manhattan plots
were generated from our in-house R scripts based on the
P value from the GAPIT results. The cutoff was arbitrarily
set at 10−7. Other settings followed GAPIT’s defaults.

Bayesian-based GWAS
We selected a Bayesian approach for exploring the rela-
tionship between gene expression and phenotype, rather
than a MLM approach, for two major reasons. First, the
multivariate Bayesian framework internally controls for
the effects of other genes by testing whether the inclu-
sion of a given marker (i.e., the expression level of a
given gene) can explain more genetic variance in each
MCMC (Markov chain Monte Carlo) iteration. Although
it may be possible to fit all the markers (i.e., gene expres-
sion levels of all genes) simultaneously by iterating an
MLM approach, this would be time consuming. In con-
trast, this feature is “baked into” the Bayesian approach.
Equally important, population structure can be con-
trolled automatically via Bayesian approaches that in-
clude multiple genes in each MCMC iteration [72]. In
contrast, population structure information is required to
control false positives as covariances in MLM, which
can decrease statistical power.

Multiple genomic selection models were constructed
employing different values of π (the proportion of SNPs,
assumed to have no effect on phenotype). The accuracies
of these various models were evaluated using tenfold
cross-validation and heritability. We selected for each
phenotype a value of π that yielded the maximum accur-
acy based on tenfold cross validation that has a heritabil-
ity that is not so high as to raise concerns of over-fitting.
This had the effect of thinning the number of predictors,
resulting in a more limited number of descriptors, simi-
lar to the output of GWAS. Our approach differs from
MLM GWAS in that rather than using a P value to re-
flect the strength of the relationship between a marker
and a phenotype, we used the model frequency (the fre-
quency with which a gene was included in a model) to
reflect the strength of the relationship between that
gene’s expression and the phenotype of interest.
The Bayesian-based GWAS was constructed using

GenSel v4.1 [10] BayesC and BayesB methods. The
model in GenSel was:

y ¼ Xβþ Zυþ e

where X, Z, β, and υ are the same as in the MLM model, e
follows a normal distribution with null mean, and covari-
ance matrix σ2e R (R is a diagonal matrix), σ2a, and σ2e have
independent inverse Chi-square priors with degree of free-
dom 4 and scale parameters set to 50% of phenotypic vari-
ation as prior. For BayesB (eRD-GWAS) and BayesC (SNP-
based GWAS), the fraction (f) of markers having no effect
was set at 0.9996 and 0.995, respectively. We used a chain
length of 41,000 and discarded 1000 iterations as a burn-in
run. Significance cutoffs for SNP-BayesB and eRD-GWAS
were set as model frequencies of 0.01 and 0.02, respectively.
Then we used genetic variance and error variance poste-
riors from BayesC as priors in BayesB; other settings were
as above. The accuracy of Bayesian-based GWAS results
were estimated via tenfold cross-validation.

Cross-validation, enrichment tests, network visualization,
and GO enrichment
Tenfold-cross validations were conducted using the R
“cvTools” package version 0.3.2 [73]. Enrichment test P
values were based on hypergeometric distributions. Net-
work visualization was conducted using “MANGO” soft-
ware version 1.20 [74]. Clustering was conducted using the
fastgreedy community method [75]. GO term enrichment
analyses were conducted using the GOseq package version
1.20.0 [76]. Functional enrichment tests were based on
MAPMAN annotations. The list of TFs used in the enrich-
ment tests were obtained from the “Grassius database” [77].
A list of Arabidopsis thaliana TFs was downloaded from
“AGRIS” [78]. P values for TF enrichment were obtained
from single-tailed Fisher tests.
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