85 research outputs found

    Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: challenges and future perspectives

    Get PDF
    Epidermal growth factor receptor (EGFR) inhibitors are valuable therapeutics in metastatic colorectal cancer (mCRC). Anti-EGFR monoclonal antibodies (MoAbs), such as cetuximab or panitumumab, in combination with chemotherapy are effective treatment options for patients with RAS and BRAF wild-type mCRC. Nevertheless, several issues are still open concerning the optimal use of anti-EGFR drugs in the continuum of care of mCRC. Novel approaches for increasing the efficacy of anti-EGFR therapies include better molecular selection of EGFR-dependent mCRC, intensification of chemotherapy, combination of anti-EGFR MoAbs and immune checkpoint inhibitors, and reintroduction of EGFR blockade or 'rechallenge' in selected patients who have previously responded to anti-EGFR MoAb therapy. An extensive translational research program was conducted in the Cetuximab After Progression in KRAS wIld-type colorectal cancer patients-Gruppo Oncologico dell' Italia Meridionale (CAPRI-GOIM) study with the aims of determining which subgroups of patients could benefit from the continuous inhibition of EGFR, from evaluating the role of liquid biopsy-based and its concordance with tissue-based molecular testing, and from investigating novel potential mechanisms of resistance to anti-EGFR therapies. In this review, we summarize the translational and clinical findings of the CAPRI-GOIM program in the context of the current knowledge of therapeutic strategies and of ongoing research on more appropriate uses of anti-EGFR therapies in RAS and BRAF wild-type mCRC patients

    SARS-CoV-2 complete genome sequencing from the Italian Campania region using a highly automated next generation sequencing system

    Get PDF
    Since the first complete genome sequencing of SARS-CoV-2 in December 2019, more than 550,000 genomes have been submitted into the GISAID database. Sequencing of the SARS-CoV-2 genome might allow identification of variants with increased contagiousness, different clinical patterns and/or different response to vaccines. A highly automated next generation sequencing (NGS)-based method might facilitate an active genomic surveillance of the virus

    Liquid biopsy by NGS: differential presence of exons (DPE) in cell-free DNA reveals different patterns in metastatic and nonmetastatic colorectal cancer

    Get PDF
    Next-generation sequencing (NGS) has been proposed as a suitable tool for liquid biopsy in colorectal cancer (CRC), although most studies to date have focused almost exclusively on sequencing of panels of potential clinically actionable genes. We evaluated the clinical value of whole-exome sequencing (WES) of cell-free DNA (cfDNA) circulating in plasma, with the goal of identifying differential clinical profiles in patients with CRC. To this end, we applied an original concept, "differential presence of exons" (DPE). We determined differences in levels of 379 exons in plasma cfDNA and used DPE analysis to cluster and classify patients with disseminated and localized disease. The resultant bioinformatics analysis pipeline allowed us to design a predictive DPE algorithm in a small subset of patients that could not be initially classified based on the selection criteria. This DPE suggests that these nucleic acids could be actively released by both tumor and nontumor cells as a means of intercellular communication and might thus play a role in the process of malignant transformation. DPE is a new technique for the study of plasma cfDNA by WES that might have predictive and prognostic value in patients with CRC.This study was funded by a grant from “Fondo de Investigaciones Sanitarias-FEDER,” Ministry of Health, Spain (FIS; PI13/01924). Work in the laboratory of Susana OlmedillasLópez is further supported by the Spanish Ministry of Health and Consumer Affairs (via a cooperative network-FEDER [TerCel RD12-0019-0035]). The CBMSO receives an institutional grant from the Fundación Ramón Arece

    Sequential HER2 blockade as effective therapy in chemorefractory, HER2 gene-amplified, RAS wild-type, metastatic colorectal cancer: learning from a clinical case

    Get PDF
    Background Constitutive activation of HER2-dependent intracellular signalling by HER2 gene amplification or by HER2 mutations has been demonstrated as a mechanism of primary and secondary cancer resistance to cetuximab or panitumumab in preclinical and clinical models of metastatic colorectal cancer (mCRC). Both HER2 Amplification for Colorectal Cancer Enhanced Stratification (HERACLES) cohort A and My Pathway clinical trials provided clinical evidence that anti-HER2 therapies could be active in these patients. Patient and methods HER2 gene amplification and HER2 protein overexpression analysis were performed in tumour tissue by fluorescence in situ hybridisation and immunohistochemistry. HER2 positivity was defined according to HERACLES CRC-specific HER2 scoring criteria. DNA analysis for multiple assessment of gene mutations or amplifications was carried out with the next-generation sequencing (NGS) Ion AmpliSeq Colon and Lung Cancer Panel and by using a more extensive targeted high-multiplex PCR-based NGS panel (OncoMine Comprehensive Assay). Results We report the clinical case of a patient with HER2 gene amplified and RAS/BRAF wild-type mCRC who experienced a long lasting and relevant clinical efficacy from sequential anti-HER2 therapies (trastuzumab plus lapatinib, pertuzumab plus trastuzumab, trastuzumab emtansine, trastuzumab plus capecitabine) achieving a cumulative clinical benefit of 29 months, after failure of the first three lines of standard treatments, which included all the potentially active drugs in mCRC, and which accounted for only 14 months of disease control. HER gene amplification was confirmed by NGS on two different metastatic lesions during the evolution of the disease. Conclusion The clinical case highlights the role of HER2 gene amplification as a key genetic driver of cancer development and progression in mCRC and suggests that sequential HER2 blockade could be a potential therapeutic strategy

    Cetuximab continuation after first progression in metastatic colorectal cancer (CAPRI-GOIM): A randomized phase II trial of FOLFOX plus cetuximab versus FOLFOX

    Get PDF
    Background: Cetuximab plus chemotherapy is a first-line treatment option in metastatic KRAS and NRAS wild-type colorectal cancer (CRC) patients. No data are currently available on continuing anti-epidermal growth factor receptor (EGFR) therapy beyond progression. Patients and methods: We did this open-label, 1:1 randomized phase II trial at 25 hospitals in Italy to evaluate the efficacy of cetuximab plus 5-fluorouracil, folinic acid and oxaliplatin (FOLFOX) as second-line treatment of KRAS exon 2 wild-type metastatic CRC patients treated in first line with 5-fluorouracil, folinic acid and irinotecan (FOLFIRI) plus cetuximab. Patients received FOLFOX plus cetuximab (arm A) or FOLFOX (arm B). Primary end point was progressionfree survival (PFS). Tumour tissues were assessed by next-generation sequencing (NGS). This report is the final analysis. Results: Between 1 February 2010 and 28 September 2014, 153 patients were randomized (74 in arm A and 79 in arm B). Median PFS was 6.4 [95% confidence interval (CI) 4.7-8.0] versus 4.5 months (95% CI 3.3-5.7); [hazard ratio (HR), 0.81; 95% CI 0.58-1.12; P = 0.19], respectively. NGS was performed in 117/153 (76.5%) cases; 66/117 patients (34 in arm A and 32 in arm B) had KRAS, NRAS, BRAF and PIK3CA wild-type tumours. For these patients, PFS was longer in the FOLFOX plus cetuximab arm [median 6.9 (95% CI 5.5-8.2) versus 5.3 months (95% CI 3.7-6.9); HR, 0.56 (95% CI 0.33-0.94); P = 0.025]. There was a trend in better overall survival: median 23.7 [(95% CI 19.4-28.0) versus 19.8 months (95% CI 14.9-24.7); HR, 0.57 (95% CI 0.32-1.02); P = 0.056]. Conclusions: Continuing cetuximab treatment in combination with chemotherapy is of potential therapeutic efficacy in molecularly selected patients and should be validated in randomized phase III trials

    Optimizing response to gefitinib in the treatment of non-small-cell lung cancer

    No full text
    Pietro Carotenuto1, Cristin Roma1, Anna Maria Rachiglio1, Raffaella Pasquale1, Renato Franco2, Giuseppe Antinolfi3, Francovito Piantedosi4, Alfonso Illiano5, Gerardo Botti2, Alessandro Morabito6, Nicola Normanno7, Antonella De Luca71Pharmacogenomic Laboratory, CROM – Centro Ricerche Oncologiche di Mercogliano, Avellino, Italy; 2Surgical Pathology Unit, INT Fondazione "G. Pascale", Naples, Italy; 3Surgical Pathology Unit, Monaldi Hospital, Naples, Italy; 4Pneumoncology DH Unit, Monaldi Hospital, Naples, Italy; 5Pneumoncology Unit, Monaldi Hospital, Naples, Italy; 6Medical Oncology, Thoracic Department, INT Fondazione "G. Pascale", Naples, Italy; 7Cell Biology and Biotherapy Unit, INT Fondazione "G. Pascale", Naples, ItalyAbstract: The epidermal growth factor receptor (EGFR) is expressed in the majority of non-small-cell lung cancer (NSCLC). However, only a restricted subgroup of NSCLC patients respond to treatment with the EGFR tyrosine kinase inhibitor (EGFR TKI) gefitinib. Clinical trials have demonstrated that patients carrying activating mutations of the EGFR significantly benefit from treatment with gefitinib. In particular, mutations of the EGFR TK domain have been shown to increase the sensitivity of the EGFR to exogenous growth factors and, at the same time, to EGFR TKIs such as gefitinib. EGFR mutations are more frequent in patients with particular clinical and pathological features such as female sex, nonsmoker status, adenocarcinoma histology, and East Asian ethnicity. A close correlation was found between EGFR mutations and response to gefitinib in NSCLC patients. More importantly, randomized Phase III studies have shown the superiority of gefitinib compared with chemotherapy in EGFR mutant patients in the first-line setting. In addition, gefitinib showed a good toxicity profile with an incidence of adverse events that was significantly lower compared with chemotherapy. Therefore, gefitinib is a major breakthrough for the management of EGFR mutant NSCLC patients and represents the first step toward personalized treatment of NSCLC.Keywords: gefitinib, EGFR, NSCLC, EGFR mutation
    corecore