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Epidermal growth factor receptor (EGFR) inhibitors are valuable therapeutics in metastatic colorectal cancer (mCRC).
Anti-EGFR monoclonal antibodies (MoAbs), such as cetuximab or panitumumab, in combination with chemotherapy
are effective treatment options for patients with RAS and BRAF wild-type mCRC. Nevertheless, several issues are
still open concerning the optimal use of anti-EGFR drugs in the continuum of care of mCRC. Novel approaches for
increasing the efficacy of anti-EGFR therapies include better molecular selection of EGFR-dependent mCRC,
intensification of chemotherapy, combination of anti-EGFR MoAbs and immune checkpoint inhibitors, and
reintroduction of EGFR blockade or ‘rechallenge’ in selected patients who have previously responded to anti-EGFR
MoAb therapy. An extensive translational research program was conducted in the Cetuximab After Progression in
KRAS wIld-type colorectal cancer patients-Gruppo Oncologico dell’ Italia Meridionale (CAPRI-GOIM) study with the
aims of determining which subgroups of patients could benefit from the continuous inhibition of EGFR, from
evaluating the role of liquid biopsy-based and its concordance with tissue-based molecular testing, and from
investigating novel potential mechanisms of resistance to anti-EGFR therapies. In this review, we summarize the
translational and clinical findings of the CAPRI-GOIM program in the context of the current knowledge of
therapeutic strategies and of ongoing research on more appropriate uses of anti-EGFR therapies in RAS and BRAF
wild-type mCRC patients.
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INTRODUCTION

At the end of the twentieth century, the prognosis of
metastatic colorectal cancer (mCRC) was relatively poor: the
most effective medical option was therapy with 5-
fluorouracil with a median overall survival (mOS) ranging
from 8 to 12 months.1 Today, there are several therapeutic
options for the continuum of care of patients with mCRC,
with at least four active lines of treatment leading to sig-
nificant improvements in mOS, which now reach approxi-
mately 30 months.2 Molecular tumor characterization,
choice of the optimal initial medical treatment, the possi-
bility of surgical intervention for selected patients with
metastatic disease, and the appropriate sequence of lines of
therapy are the pillars of mCRC clinical management.
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Among these therapeutic possibilities, the addition of
molecular-targeted drugs to chemotherapy has significantly
contributed to the improvement in survival.2

The epidermal growth factor receptor (EGFR) is a valu-
able therapeutic target in mCRC. Nevertheless, treatment
with anti-EGFR monoclonal antibodies (MoAb), such as
cetuximab or panitumumab, is effective only in a subset of
patients.3e6 Activating mutations in hot spot regions of
exons 2, 3, and 4 of KRAS or of NRAS genes, which occur in
approximately 55% of mCRC, are the major intrinsic
mechanisms of resistance to anti-EGFR MoAbs and are
currently used for excluding patients from treatment with
these drugs.7,8 Other molecular mechanisms of intrinsic
and/or acquired cancer cell resistance have been suggested
in RAS wild-type (WT) tumors.9,10 Therefore, the identifi-
cation of patients whose tumors are truly dependent upon
EGFR activation is an open clinical question for the optimal
use of anti-EGFR drugs in mCRC treatment.

To gain insights on the role of anti-EGFR agents in the
continuum of care of mCRC patients, we started an aca-
demic, non-profit research program in 25 Italian centers
within the cooperative network of the Gruppo Oncologico
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dell’ Italia Meridionale (GOIM) in 2009. The Cetuximab After
Progression in KRAS wIld-type colorectal cancer patients
(CAPRI)-GOIM study was designed to investigate the strat-
egy of continuing EGFR inhibition in second-line therapy of
mCRC patients after progression from first-line treatment
with cetuximab plus chemotherapy. Briefly, mCRC patients
with KRAS exon 2 WT tumors (at that time the only known
biomarker for anti-EGFR therapy patient selection) received
FOLFIRI plus cetuximab as first-line treatment and, at dis-
ease progression, were randomly assigned to receive either
FOLFOX or FOLFOX plus cetuximab.11e13 An extensive
translational research program was conducted in the CAPRI-
GOIM study to determine which subgroups of patients
could benefit from the continuous blockade of EGFR, to
evaluate the role of liquid biopsy-based molecular testing
and its concordance with tissue-based molecular testing, as
well as to investigate novel potential mechanisms of resis-
tance to anti-EGFR therapies.14e18 Here, we summarize the
major translational and clinical findings of the CAPRI-GOIM
program that have provided evidence for a more appro-
priate use of anti-EGFR therapies in mCRC. These results are
discussed in the context of current knowledge and of on-
going research in this field.
CORRELATION BETWEEN THE EFFICACY OF FIRST-LINE
TREATMENT WITH FOLFIRI PLUS CETUXIMAB AND TUMOR
MOLECULAR CHARACTERIZATION

Three hundred and forty patients with KRAS exon 2 WT
mCRC received FOLFIRI plus cetuximab as first-line treat-
ment (Table 1).11 KRAS mutations were determined by local
laboratories. In the intention-to-treat population, the re-
sults were consistent with data from randomized trials
(CRYSTAL, OPUS, and FIRE 3) that have evaluated the effi-
cacy of the addition of cetuximab to chemotherapy as first-
line treatment of KRAS exon 2 WT mCRC patients.19e21 For
182/340 (53.5%) patients, formalin-fixed paraffin-
embedded tissue samples were available for next genera-
tion sequencing (NGS) analysis. Tumor samples were
analyzed with Ion Torrent technology, using the Colon and
Lung Cancer Panel that can identify mutations in 87 hot
spot regions of 22 genes (ALK, EGFR, ERBB2, ERBB4, FGFR1,
FGFR2, FGFR3, MET, DDR2, KRAS, PIK3CA, BRAF, AKT1,
PTEN, NRAS, MAP2K1, STK11, NOTCH1, CTNNB1, SMAD4,
FBXW7, TP53). Based on the results of a previous validation
study, a 2% sensitivity threshold was set for this panel.22

Only less than one-third of tumors were WT for all 22
genes tested (58/182; 31.9%). One or more genes were
mutated in 124/182 (68.1%) samples. Unexpectedly, KRAS
exon 2 mutations were identified in 29/182 (15.9%) sam-
ples, although they had been classified as KRAS exon 2 WT
tumors by local laboratory assessment. These findings rep-
resented the first report of discordance between centralized
and local laboratory analysis of KRAS exon 2 mutations in a
prospective clinical trial, and highlighted the need for
external quality assessment as well as the use of more
sensitive techniques, in order to ensure the standardization
of RAS testing for clinical practice.23 Mutations in exons 3 or
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4 of the KRAS gene were identified in 16/182 (8.8%) sam-
ples, while NRAS exon 2 or 3 mutations were reported in
13/182 (7.1%) cases. PIK3CA mutations were found in 24/
182 (13.2%) cases, whereas BRAFV600E mutations were
identified in 10/182 (5.5%) tumors.11

We investigated if mutations in KRAS, NRAS, BRAF, and
PIK3CA genes could influence the efficacy of FOLFIRI plus
cetuximab treatment. The subset of patients with quadruple
WT tumors had the greatest benefit from this treatment
with median progression-free survival (mPFS) of 11.3
months and overall response rate (ORR) of 64.4%, while
mPFS was 7.7 months and ORR 47.4% in patients with a
mutation in at least one of these genes (Table 1). These
results have been confirmed in subsequent studies of first-
line treatment of molecularly selected mCRC with chemo-
therapy plus anti-EGFR MoAbs, such as the VALENTINO trial
that investigated the combination of FOLFOX plus
panitumumab.24

We conducted a post hoc analysis for assessing the
feasibility and the efficacy of FOLFIRI plus cetuximab in
elderly patients who were enrolled in the CAPRI-GOIM
clinical trial, considering that the majority of mCRC cases
are diagnosed in the elderly.25 Phase II and III studies have
shown the safety and clinical activity of bevacizumab in
combination with fluoropyrimidine-based regimens in
elderly patients with mCRC who are unfit for chemotherapy
doublets.26,27 Few data are available for elderly patients
who are suitable for anti-EGFR treatment in combination
with chemotherapy, however.28,29 In the CAPRI-GOIM study,
FOLFIRI plus cetuximab treatment resulted in similar PFS
and ORR among the elderly population, with a similar
incidence of all grade adverse events. Nevertheless, in pa-
tients �75 years old, higher rates of grade 3e4 diarrhea
and neutropenia were reported.13
TUMOR HETEROGENEITY FOR RAS, BRAF, AND PI3KCA
MUTATIONS AND EFFECTS ON ANTI-EGFR THERAPIES

Intratumor genetic heterogeneity refers to the concept that
in a single tumor, different cancer cell clones, carrying
different molecular alterations, coexist.30 Recently, greater
attention has been focused on the issue of tumor hetero-
geneity, since the presence of cancer cell clones with
different mutations could constitute a mechanism of pri-
mary and/or secondary resistance to molecular targeted
therapies.31 In the CAPRI-GOIM trial, the relevance of het-
erogeneity of KRAS, NRAS, BRAF, and PI3KCA mutations on
the clinical activity of anti-EGFR therapy was evaluated.14

Tumor heterogeneity was measured by quantitative
assessment of mutant allele frequency (MAF) by NGS with
normalization for cancer cell content in the tumor tissue.
Assuming that somatic mutations generally affect one
allele, the heterogeneity score (HS) was calculated by
multiplying by two the frequency of mutant alleles in cancer
cells. As an example, HS ¼ 100 suggests that all cancer cells
are mutated; HS <100 indicates that only a fraction of
cancer cells are mutated; HS >100 implies gene copy
number variation, either gain of the mutant allele or loss of
https://doi.org/10.1016/j.annonc.2019.10.007 31
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Table 1. Clinical activity of FOLFIRI plus cetuximab as first line treatment of metastatic colorectal cancer (mCRC) in the intention to treat population (ITT) and
in the next generation sequencing (NGS) cohort

First line:
FOLFIRI D cetuximab

ITT
(N [ 340 patients)

NGS
(N [ 182 patients)

KRAS, NRAS, BRAF, and PIK3CA WT
(N [ 102 patients)

KRAS, NRAS, BRAF, or PIK3CA mut
(N [ 78 patients)

Complete response (%) 26/340 (7.6%) 12/182 (6.6%) 8/104 (7.7%) 4/78 (5.1%)
Partial response (%) 166/340 (48.8%) 927182 (50.5%) 59/104 (56.7%) 33/78 (42.3%)
Stable disease (%) 115/340 (33.8%) 61/182 (33.5%) 28/104 (26.9%) 33/78 (42.3 %)
Disease progression (%) 33/340 (9.7%) 17/182 (9.3%) 9/104 (8.6%) 8/78 (10.3%)
ORR (%) 192/340 (56.4%) 104/182 (57.1%) 67/104 (64.4%) 37/78 (47.4%)
mPFS, months 9.9 9.8 11.3 7.7

Subgroup analysis on the efficacy of FOLFIRI plus cetuximab in KRAS/NRAS/BRAF and PIK3CA wild-type or in KRAS/NRAS/BRAF/PIK3C mutant cohorts.
Mut, mutant; mPFS, median progression-free survival; ORR, overall response rate; WT, wild-type.
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the WT allele.14 KRAS HS ranged between 12 and 260, as in
most mCRC patients the majority of cancer cells had mutant
KRAS. Similar results were found for NRAS mutant cases. In
contrast, for BRAF or for PIK3CA mutant cases, generally
only a fraction of cancer cells were mutated.

We investigated whether there was a threshold value for
KRAS mutations to predict response to therapy and if the HS
could represent a feasible biomarker for this purpose. Among
10 patients carrying KRAS mutant tumors with HS <33, the
ORR to FOLFIRI plus cetuximab therapy was 70%. On the
other hand, patients with KRAS mutant tumors with HS >33
had a response rate in line with the activity of FOLFIRI alone
(45.7%), as expected for mCRC patients with RAS mutant
tumors. The mPFS was similar for the high KRAS and low
KRAS mutant groups (7.97 versus 8.37 months), however,
suggesting that even a low content in KRAS mutant cancer
cells is sufficient to determine resistance to anti-EGFR ther-
apies. These data are in agreement with the current knowl-
edge on resistance to targeted agents. A low fraction of
cancer cells that carry a resistance mutation may not prevent
a transient clinical response to a specific drug, but the
duration of the response is relatively short for the rapid
clonal expansion of the resistant cancer cells, eventually
leading to disease progression. Nevertheless, the threshold
of KRAS MAF that could be used to predict the clinical effi-
cacy of EGFR blockade is still debated. In the CAPRI-GOIM
trial, even very low MAFs determined resistance to cetux-
imab.14,18 In the CRYSTAL trial, RAS mutational status was
retrospectively validated with a cut-off of 5%, since RAS MAF
values <5% did not affect the clinical efficacy of FOLFIRI plus
cetuximab.4 A retrospective study suggested that mCRC pa-
tients with RAS MAF values <1% who were treated with
anti-EGFR therapies had similar clinical outcomes compared
Table 2. Clinical outcome of second line treatment with FOLFOX plus cetuxim
population (ITT)

Second line:
FOLFOX D cetuximab
versus FOLFOX

FOLFOX D cetuximab
ITT
(N [ 74 patients)

FOLFOX
ITT
(N [ 79 patients)

ORR (%) 21.6% 12.7%
mPFS, months 6.4 4.5

(HR: 0.81; P ¼ 0.19)
mOS, months 17.6 14

(HR: 0.86; P ¼ 0.41)

Subgroup analysis on the efficacy of FOLFOX plus cetuximab in KRAS/NRAS/BRAF and PIK3
HR, hazard ratio; mOS, median overall survival; mPFS, median progression-free survival; m
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with patients with RAS WT tumors.32 A recent large multi-
center retrospective analysis that compared standard-of-care
RAS testing with NGS multigene assessment reported no
improvement in the selection of patients for anti-EGFR
therapy by lowering the threshold in tissue samples from
5% to 1% MAF.33 As expected, in this study anti-EGFR
treatment was significantly better in mCRC patients with
KRAS/NRAS/BRAF/PIK3CA WT tumors.33

Of note, in the CAPRI-GOIM study we found in 7/10 cases
of low KRAS mutational load the presence of additional
mutations in PIK3CA, TP53, BRAF, ERBB2, FGFR3, and/or
FBXW7 genes, which could equally contribute to anti-EGFR
cancer cell resistance. These findings highlight the existence
of a subgroup of mCRC with a mixed genotype, which is
characterized by different potentially driver mutations that
affect the EGFR pathway. The complexity of tumor muta-
tions and of cancer cell heterogeneity suggests that
biomarker-selected combinations of different molecular
targeted drugs will probably be necessary to effectively
control cancer growth and, thus, to determine the relevant
clinical benefit in mCRC.
CETUXIMAB CONTINUATION AFTER FIRST PROGRESSION
IN mCRC

In the CAPRI-GOIM trial, 153 patients who obtained a
clinical benefit (stable disease, partial or complete response
[CR]) from FOLFIRI plus cetuximab as first-line therapy, were
randomly assigned to second-line treatment with FOLFOX
plus cetuximab (arm A, n ¼ 74) or FOLFOX (arm B, n ¼ 79)
(Table 2) at disease progression.12 In the intention-to-treat
population we found a trend in improvement in PFS and OS.
In the molecularly selected population (KRAS, NRAS, BRAF,
ab (experimental arm) and FOLFOX (control arm) in the intention-to-treat

FOLFOX D cetuximab
KRAS, NRAS, BRAF, and PIK3CA WT
(N [ 34 patients)

FOLFOX
KRAS, NRAS, BRAF, or PIK3CA mut
(N [ 32 patients)

29.4% 9.4%
6.9 5.3

(HR: 0.56; P ¼ 0.025)
23.7 19.8

(HR: 0.57; P ¼ 0.056)

CA or in KRAS/NRAS/BRAF/PIK3CA mutant cohorts.
ut, mutant; ORR, overall response rate; WT, wild-type.
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and PIK3CA WT) representing 76%, we observed a statisti-
cally significant improvement in mPFS, with a trend in
improvement of mOS of about 4 months and an ORR three
times higher for the experimental arm (29.4% versus 9.4%).
These data are encouraging when compared with other
second-line options; this strategy could be an option for
quadruple WT mCRC patients who require tumor shrinkage
after first-line therapy.34e36 The CAPRI-GOIM trial has been
the only randomized study to provide evidence that a
potentially relevant clinical benefit could be obtained by the
continuous blockade of EGFR in a subset of patients with
mCRC whose tumors remain dependent on EGFR activation.
The results of a retrospective analysis of two non-
randomized single-arm parallel studies, in which mCRC pa-
tients with RAS WT tumors were treated with chemo-
therapy alone or with chemotherapy plus cetuximab after
first-line treatment with cetuximab plus chemotherapy,
have been reported.37 In patients with all RAS WT tumors
who had early tumor shrinkage in first-line treatment, the
continuation of cetuximab after progression in combination
with a different chemotherapy backbone resulted in a sta-
tistically significant advantage in terms of OS, PFS, and ORR.
No benefit was found in patients with RAS mutant tumors
or in RAS WT patients who did not achieve early tumor
shrinkage in first-line treatment.37
RAS TESTING BY LIQUID BIOPSY AND CORRELATION WITH
CLINICAL OUTCOME

The term liquid biopsy refers to an analytical technique that
allows tumor molecular profiling through the use of tumor-
derived biomarkers in body fluids (including peripheral
blood, urine, and cerebral-spinal liquor). In this respect, the
search and the analysis of circulating tumor DNA (ctDNA)
from cancer cells could represent an important source of
clinical information on the prognosis of intensively treated
CRC patients, on the evaluation of sensitivity to specific
molecular targeted therapies, and on the early detection of
mechanism(s) of cancer cell resistance.38

In the CAPRI-GOIM study we also evaluated the predic-
tive role of RAS testing with liquid biopsy. For 92/340 mCRC
patients, both tissue samples for NGS analysis and baseline
plasma samples for beads, emulsions, amplification, mag-
netics testing were available.15 RAS mutations were found
in both tissue and plasma samples in 33/92 patients
(35.9%). The concordance rate between tissue and plasma
was only 78.3%, however. Of note, 10 patients were tissue
RAS mutant and plasma RAS WT, whereas 10 patients were
tissue RAS WT and plasma RAS mutant. There were no
major differences in mPFS, mOS, and ORR of RAS WTor RAS
mutant patients according to either tissue or liquid biopsy
RAS testing.15 We found a lower concordance rate between
RAS analyses on tumor tissues and plasma samples
compared with other reports.39,40 For plasma RAS WT but
tissue RAS mutant cases, possible causes of discordance
could be identified in the prevalence of lung and node
metastases, which are known to reduce the sensitivity of
RAS testing in liquid biopsy.41,42 Moreover, in seven patients
Volume 31 - Issue 1 - 2020
the primary tumor was surgically removed before drawing
blood, and this could have reduced tumor burden and the
levels of ctDNA and, therefore, could have affected liquid
biopsy sensitivity.43 To investigate the discordant cases,
further analysis was performed with digital droplet PCR
(ddPCR), a highly sensitive analytic technique. Interestingly,
ddPCR detected RAS mutations only in 2/10 patients who
were plasma RAS WT and tissue RAS mutant. In contrast,
ddPCR detected the presence of RAS mutations at low
allelic frequencies ranging between 0.15% and 1.15%, which
were below the 2% threshold of NGS that was used in the
CAPRI-GOIM study in all 10 patients who were tissue RAS
WT but RAS mutant by liquid biopsy. These results suggest
the presence of subclonal RAS mutations in these patients.
Remarkably, mCRC patients with RAS WT tumor on tissue
and RAS mutant tumor on liquid biopsy had a similar PFS
and OS compared with patients with RAS mutant tumors on
tissue.15 Despite the limits of a post hoc analysis that was
conducted on a relatively small patient group, these data
highlight the capability of liquid biopsy to detect spatial and
temporal tumor heterogeneity. Therefore, liquid biopsy
testing for ctDNA could be an effective tool in the diagnosis
of RAS mutations and could represent a valid instrument for
monitoring the emergence of cancer resistance to anti-EGFR
therapies.
NOVEL MECHANISMS OF RESISTANCE TO ANTI-EGFR
DRUGS

The benefit of cetuximab- or panitumumab-based treat-
ments for patients with mCRC could be limited by primary or
acquired mechanisms of resistance. KRAS or NRAS mutations
are predictive biomarkers for intrinsic (or innate) and sec-
ondary (or acquired) resistance to anti-EGFR therapy. Other
gene alterations, however, might be involved in determining
resistance to these drugs (Figure 1). Several mechanisms of
acquired or secondary cancer resistance have been identi-
fied, including activation of angiogenesis, novel development
of RAS mutations and/or EGFR mutations, gene amplifica-
tion, or mutations in other tyrosine kinase receptors
(RTK).9,10,44e46 We have previously shown in preclinical
models of human CRC that acquired resistance to anti-EGFR
drugs could be associated with increased levels of vascular
endothelial growth factor and that inhibiting angiogenesis
could contribute to tumor growth inhibition.47 Under the
selective pressure of EGFR blockade, approximately one-third
to one-half of mCRC patients will develop secondary resis-
tance through the emergence of RAS mutant cancer cell
subclones.48 Another mechanism of acquired resistance
could be the onset of mutations in the EGFR extracellular
domain (ECD). Montagut et al.49 identified the S492R mu-
tation in the ECD of EGFR that prevents the binding of
cetuximab to EGFR. Of note, the S492R EGFR ECD mutation
has never been detected in mCRC patients before exposure
to anti-EGFR MoAb treatment.50 Human EGFR 2 (HER2) gene
amplification has been described in approximately 3% to 5%
of RASWT tumors as a primary and/or secondary mechanism
of resistance to anti-EGFR therapy.51,52 In this respect, HER2
https://doi.org/10.1016/j.annonc.2019.10.007 33
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Figure 1. Epidermal growth factor receptor (EGFR) signaling pathway and potential mechanism of resistance to cetuximab and panitumumab.
AXL, tyrosine-protein kinase receptor UFO; EGF, epidermal growth factor; EMT, epithelial-mesenchymal transition; EPHA2, erythropoietin-producing hepatocellular A2
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inhibition is a promising strategy in HER2 amplified mCRC.53e57

MET gene amplification has been found as a subclonal
alteration in a small group of patients. In these patients,
during anti-EGFR treatment, MET amplified cancer cells
undergo a positive selection and become the dominant
cancer cell population.58,59

To identify novel potential biomarkers of resistance to
cetuximab treatment, we performed a comprehensive mo-
lecular profiling of 21 quadruple WT tumors from mCRC
patients enrolled in the CAPRI-GOIM study to investigate if
the presence of any gene alteration(s) could be correlated
with a poorer clinical outcome.18 One patient with a short
PFS had a tumor with the c.169A>G mutation in the
MAP2K1 gene that codes for the MEK1 protein. This variant
results in the inactivation of the MEK1 negative regulatory
domain and determines a gain of function of MEK1 protein.60

Two patients with short mPFS had tumors with mutations in
NF1, a gene that encodes for an inhibitory regulator of RAS
34 https://doi.org/10.1016/j.annonc.2019.10.007
signaling pathway.61 In particular, we found an insertion
(c.638_639insA; p.Asn214Lys fs*2) in one tumor sample and
an single nucleotide variation (c.5101A>T; p.Lys1701Ter) in
the other tumor sample. These mutations result in the loss of
function of NF1 and could cause the constitutive activation of
RAS signaling. To our knowledge, these NF1 mutations have
never been reported as negative biomarkers for anti-EGFR
drugs in a prospective clinical trial in mCRC. Three
missense mutations were found in the FBXW7 gene. The
prognostic role of these gene alterations is still controversial.
Recently, FBXW7 variants in a tumor sample from a patient
who was refractory to chemotherapy plus cetuximab have
been reported.62,63 In the CAPRI-GOIM study, one patient
with this variant had CR, with a PFS of 18 months; on the
contrary the other two patients did not respond to FOLFIRI
plus cetuximab treatment. For these two patients,
c.1798G>A (p.Asp600Asn) and c.1513C>T single nucleotide
variation (p.Arg505Cys) FBXW7 mutations were found. In the
Volume 31 - Issue 1 - 2020
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patient who had a significant clinical benefit from FOLFIRI
plus cetuximab treatment, the FBXW7 mutation coexisted
with GAS6 gene amplification. In this respect, elevated GAS6
expression has been correlated with a good prognosis in
CRC.64 Collectively, these results indicate that mechanisms of
anti-EGFR drug resistance are extremely complex and, in
some cases, cannot be only explained by the presence of a
single gene alteration.

We also investigated the role of other growth factor
receptor-driven signaling pathways that could be involved
in either primary or secondary resistance to anti-EGFR
MoAbs. Erythropoietin-producing hepatocellular (EPH) A2
receptor is a member of the EPH RTK family.65 EPHA2
overexpression has been described as a poor prognostic
factor in early stage CRC and has been shown as a negative
predictive biomarker of response to anti-EGFR therapy.66,67

We evaluated the expression of EPHA2 by immunochem-
istry (IHC) in tumor samples from a cohort of 82 patients
RAS WT in the CAPRI-GOIM study.16 EPHA2 expression by
IHC was detected in 55 of 82 (67%) tumor specimens. To
better understand the predictive role of EPHA2, we devel-
oped a semi-quantitative immune-histoscore (HSCORE).
Patients with high EPHA2 HSCORE had a statistically signif-
icant inferior mPFS compared with patients with low EPHA2
HSCORE.We evaluated EPHA2 as a mechanism of resistance
to anti-EGFR MoAbs by using human CRC cell lines with
primary or acquired resistance to cetuximab.16,68 The
combination of ALW-II-41-27, a small molecule tyrosine ki-
nase inhibitor of EPHA2, with cetuximab was able to restore
the sensitivity to anti-EGFR therapies, resulting in significant
antitumor activity.16 Taken together, these data suggest that
EPHA2 is a novel biomarker of resistance to EGFR targeting
therapies, and that EPHA2 could be an innovative thera-
peutic target in order optimize treatment of patients with
RAS WT mCRC.

AXL is a member of the TAM RTK family.69 We have
previously demonstrated in human CRC cell lines that AXL
activation could promote proliferation, migration, and EMT,
and that AXL blockade may exert sustained antitumor ac-
tivity and induce resistance to anti-EGFR therapy.70e72 We
retrospectively analyzed, by IHC, 102 RAS WT tumor sam-
ples of patients with mCRC (of whom 68 patients were
included in the CAPRI-GOIM study) who received chemo-
therapy plus cetuximab as first-line treatment.16 AXL-
positive patients (9%) were refractory to chemotherapy
plus cetuximab, with a statistically significant worse mPFS
compared with AXL-negative patients (4.3 versus 12.1
months; P ¼ 0.001) and with a lower OS (20.1 versus 30.2
months). With the limitation of a retrospective analysis on a
small cohort of patients, these results might suggest a role
of AXL as a predictive biomarker of lack of response to
cetuximab in RAS WT mCRC.16
NOVEL APPROACHES FOR OPTIMIZING THE EFFICACY OF
ANTI-EGFR THERAPIES

FOLFOX or FOLFIRI doublets in combination with cetuximab
or panitumumab are first-line treatment options for RAS
Volume 31 - Issue 1 - 2020
and BRAFWTmCRC patients, according to European Society
for Medical Oncology clinical practice guidelines.2,73

Nevertheless, several issues are still open for the optimal
use of anti-EGFR drugs in the continuum of care of mCRC.

A first question is how to improve the activity and effi-
cacy of anti-EGFR drugs in combination with chemotherapy.
The intensification of first-line treatment using triple-drug
chemotherapy regimens in combination with EGFR
blockade is a potential strategy to intensify the efficacy of
EGFR inhibitors in mCRC.74 The MACBETH study has
demonstrated that cetuximab could be added to modified
FOLFOXIRI as first-line therapy for fit RAS and BRAF WT
mCRC patients with high ORR and a manageable safety
profile.75 Furthermore, the final results of the VOLFI study, a
randomized phase II trial evaluating the addition of pan-
itumumab to FOLFOXIRI as initial treatment of RAS WT
mCRC patients, have been recently reported.76 The study
met its primary end point, which was ORR. ORR was 87.3%
in the experimental arm compared with 60.6% in the FOL-
FOXIRI control arm (P ¼ 0.0041). An increased rate of sur-
gical resection of liver metastases was also obtained.
Nevertheless, despite a significant increase in responses,
mPFS was similar between the two arms, without statisti-
cally significant improvements in mOS for the experimental
arm (probably due to the increased number of censored
cases for surgical resection of liver metastatic disease).76 A
critical issue for the combination of anti-EGFR agents and
triplet chemotherapy is side-effects, including gastrointes-
tinal toxicity, that could limit the feasibility of these regi-
mens. Nevertheless, RAS WT mCRC patients with a good
performance status and who require intense and rapid tu-
mor shrinkage might benefit from a combination of FOL-
FOXIRI plus anti-EGFR MoAbs. In this respect, TRIPLETE, a
multicenter randomized phase III trial, that is comparing
FOLFOXIRI plus panitumumab versus FOLFOX6 plus pan-
itumumab as initial therapy for fit patients with unresect-
able RAS and BRAF WT mCRC, is currently ongoing.77

A potential intensification of first-line therapies with anti-
EGFR drugs could be the combination of EGFR inhibitors
and immune checkpoint inhibitors. Immunotherapy is
generally of limited efficacy in mCRC.78 Whereas in deficient
mismatch repair or in high microsatellite instable mCRC
there is clinical evidence of immune checkpoint inhibitors
efficacy, approximately 90% to 95% of mCRC patients who
have a proficient mismatch repair or a microsatellite stable
tumor do not benefit from immunotherapy.78 Nevertheless,
experimental preclinical data suggest that blocking EGFR
with cetuximab in cancer cells and in the tumor microen-
vironment could modulate immune infiltration and there-
fore could activate the antitumor activity of the immune
system.78,79 On the other hand, in a preclinical model of
CRC, the expression of EGFR on myeloid cells in the tumor
microenvironment contributed to tumor development and
progression through the production of immune-modulatory
cytokines, such as interleukin 6.80 Furthermore, cetuximab
could promote opsonization and phagocytosis of human
colon cancer cells by dendritic cells through the stimulation
of tumor antigen presentation to T cells and, thus,
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cetuximab could potentially activate an immune
response.81 Moreover, cetuximab may induce natural killer
cell-mediated antibody-dependent cellular cytotoxicity.82

On this basis, trials are currently investigating the combi-
nation of cetuximab with immune checkpoint inhibitors in
different cancers, such as head and neck squamous cell
carcinoma and non-small-cell lung cancer. In mCRC, the
AVETUX phase II study enrolled 43 patients with RAS and
BRAF WT tumors. First-line treatment consisted of avelu-
mab, an anti-programmed death ligand 1 (PD-L1) MoAb,
plus cetuximab in combination with FOLFOX6. An interim
analysis of the AVETUX trial that was conducted on the first
20 treated patients has reported a 75% ORR (15/20) with a
95% disease control rate (19/20).83 A further type of ther-
apy intensification is currently being evaluated in the AVE-
TRIC trial, a single-arm study of FOLFOXIRI in combination
with cetuximab and avelumab as initial treatment of RAS
and BRAF WT mCRC patients. After induction therapy with
all drugs, maintenance treatment with cetuximab plus
avelumab is scheduled until disease progression (EudraCT
Number 2019-0041501-24).

Another potential area for improving the efficacy of
anti-EGFR agents in the continuum of care of mCRC is the
reintroduction of EGFR blockade or ‘rechallenge’ with
EGFR inhibitors in selected patients who have been pre-
viously treated with anti-EGFR MoAbs. Rechallenge refers
to anti-EGFR drug re-treatment of mCRC patients with RAS
WT tumors who have had an initial significant clinical
benefit from anti-EGFR drugs, such as a major response or
prolonged disease stabilization, and who, upon disease
progression, received a different medical treatment.84 The
rechallenge concept was first explored in a study that
evaluated the potential clinical activity of cetuximab plus
irinotecan. Thirty-nine patients with KRAS exon 2 WT
mCRC, who had a clinical benefit from anti-EGFR drugs in
combination with chemotherapy as first-line therapy, at
disease progression were treated with a second-line
therapy. After further disease progression, these patients
received cetuximab plus irinotecan.85 The reported RR was
53.8% (with 19 partial response [PR] and 2 CR) and the
mPFS was 6.6 months.85 A possible explanation of these
results is the dynamic temporal evolution of resistance
mechanisms to anti-EGFR drugs. In fact, it has been shown
that cancer cell subclones, that are harboring RAS or ECD
EGFR mutations, evolve and are rapidly selected as the
predominant clones during anti-EGFR therapies, thus
causing disease progression.86e88 These mutant cancer
cells decay after the interruption of EGFR inhibitor treat-
ment, however, with a cumulative half-life of approxi-
mately 4 months.89 In line with this hypothesis, the results
of CRICKET, a small single-arm proof-of-concept prospec-
tive study of rechallenge with cetuximab and irinotecan,
have recently been published.90 Twenty-seven patients
with RAS and BRAF WT mCRC, who had at least a PR and
PFS of 6 months or more after first-line cetuximab plus
chemotherapy, were enrolled. Interestingly, a post hoc
analysis revealed that all patients who achieved a PR had
RAS WT tumors at the baseline liquid biopsy testing for
36 https://doi.org/10.1016/j.annonc.2019.10.007
ctDNA before cetuximab plus irinotecan rechallenge.90

Several trials of anti-EGFR rechallenge therapies are
currently on-going (Table 3).

Our research group is currently conducting two studies
that are evaluating the activity of two different rechallenge
strategies. The CAVE mCRC-GOIM trial is a multicenter,
single-arm phase II study, which is investigating third-line
treatment with cetuximab in combination with the anti-
PD-L1 MoAb avelumab in 75 RAS and BRAF WT mCRC
patients who have obtained a partial or a CR with an anti-
EGFR MoAb-based chemotherapy in first line. Overall
survival is the primary end point (EudraCT Number 2017-
004392-32). VELO is a multicenter randomized phase II trial
which is investigating panitumumab plus trifluridine-
tipiracil versus trifluridine-tipiracil as third-line therapy in
112 patients with RAS WT mCRC, who received first-line
chemotherapy plus an anti-EGFR drug and who had a
clinical benefit from initial treatment (complete or PR).
The primary end point is PFS (EudraCT Number 2018-
001600-12).

Finally, the results of the CAPRI-GOIM study suggest that
a potentially relevant clinical benefit could be obtained by
continuing EGFR blockade after first-line disease progres-
sion in a subset of molecularly selected patients with mCRC
whose tumors are highly dependent on EGFR signaling.
These results provide evidence that, despite the onset of
secondary mechanisms of resistance that could be respon-
sible for disease progression in a large group of patients, a
subset of patients has tumors that remain dependent on
EGFR activation and, therefore, could be effectively treated
with a different chemotherapy regimen while continuing
EGFR blockade. Liquid biopsy now allows a non-invasive
dynamic evaluation of the complex molecular heterogene-
ity of mCRC. Serial assessments of ctDNA during treatment
with anti-EGFR drugs allow the evaluation of cancer mo-
lecular evolution and the identification of the onset of
resistance mechanisms. In this regard, our cooperative
research group is currently organizing a proof-of-concept
prospective clinical study of sequential treatments of
mCRC patients with RAS and BRAF WT tumors (CAPRI 2-
GOIM trial). Treatment choices will be defined by liquid
biopsy ctDNA testing. As illustrated in Figure 2, two
sequence strategies will be evaluated, with the aim of
optimizing anti-EGFR therapies according to cancer molec-
ular evolution. A continuum treatment with cetuximab in
first line, in second line, and, eventually, in third line (with
chemotherapy regimen changes: FOLFIRI, FOLFOX, and iri-
notecan, respectively) will be done in patients whose tu-
mors remain RAS WT by liquid biopsy assessment. On the
contrary, if, after first-line progression, a RAS mutation is
detected, second line will consist of FOLFOX plus bev-
acizumab. In this case, if at the time of second-line disease
progression RAS WT is found at liquid biopsy testing, pa-
tients will be treated in third line with irinotecan plus
cetuximab according to the anti-EGFR rechallenge strategy.
In the case of persistence of RAS mutations, a standard-of-
care third-line treatment (trifluridine/tipiracil or regor-
afenib) will be provided.
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Table 3. Ongoing clinical trial investigating different ‘rechallenge’ strategies for RAS wild-type (WT) metastatic colorectal cancer (mCRC)

Study name Recruitment status Treatment Study population End point

CAVE mCRC GOIM
(EudraCT: 2017- 004392-32)

Active, recruiting Cetuximab þ avelumab Pretreated patients (>2 lines) with RAS WT mCRC who
obtained a PR/CR in first line with anti-EGFR treatment and
received at least a second line of treatment (last
administration EGFR >4 months)

Primary end point: OS
Secondary end points: PFS, ORR

VELO
(EudraCT: 2018-001600-12)

Active, recruiting Panitumumab þ TAS102
versus
TAS102

Third-line treatment in patients with RAS WT mCRC who
obtained a PR/CR in first line to an anti-EGFR treatment
and received a second line of treatment (last
administration EGFR >4 months)

Primary end point: PFS
Secondary end points: OS, ORR

CHRONOS
(NCT03227926)

Active, recruiting Panitumumab Third-line treatment in patients with RAS WT mCRC who
obtained a PR/CR in first line to an anti-EGFR treatment
and received a second line of treatment; RAS extended
mutational load measured at RML; a >50% drop in RAS
extended mutational load between BML and RML

Primary end point: ORR
Secondary end point: PFS, OS

FIRE 4
(NCT02934529)

Active, recruiting Cetuximab þ irinotecan
versus
standard of care III line

Third-line treatment in patients with RAS WT mCRC who
were treated with FOLFIRI þ cetuximab as first-line therapy
and obtained a PR/CR (PFS >6 months) and received a
second line of treatment with FOLFOX plus bevacizumab

Primary end point: OS
Secondary end point: PFS, ORR,
molecular biomarker

A-REPEAT
(NCT03311750)

Active, recruiting Cetuximab
þ
irinotecan/FOLFIRI/FOLFOX

Third-line treatment in patients with RAS WT mCRC who
obtained a PR/CR in first line to an anti-EGFR treatment
and received a second line of treatment (last
administration EGFR >2 months)

Primary end point: ORR
Secondary end point: ORR by
RAS status, PFS, OS

REGAIN
(NCT02316496)

Completed Cetuximab þ irinotecan Third-line treatment in patients with RAS WT mCRC who
were treated with FOLFIRI þ cetuximab as first-line therapy
and obtained a PR/CR and received a second line of
treatment with FOLFOX plus bevacizumab (last
administration EGFR >6 weeks)

Primary end point: ORR
Secondary end points: DCR,
DOR, PFS, OS

NCT03524820 Active, recruiting Cetuximab Third-line treatment in patients with RAS WT mCRC who
obtained a PR/CR in first line to an anti-EGFR treatment
and received a second line of treatment (last
administration EGFR >3months)

Primary end point: ORR
Secondary end point: liquid biopsy
biomarker analysis

NCT03087071
(cohort 3)

Active, recruiting Panitumumab Patients with RASWTmCRC who received cetuximab-based
therapy and had a clinical benefit (PR, CR, PFS >4 months)
and progressed to 5-FU, irinotecan, and oxaliplatin with a
liquid biopsy negative for EGFR ECD mutation and RAS,
BRAF WT on ctDNA

Primary end point: ORR
Secondary end point: PFS, OS

BML, rechallenge mutational load; CR, complete response; ctDNA, circulating DNA; DCR, disease control rate; DOR, duration of response; ECD, extracellular domain; EGFR, epidermal growth factor receptor; ORR, overall response rate; OS, overall
survival; PFS, progression-free survival; PR, partial response; RML, baseline mutational load.
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RAS/BRAF WT
First line 
FOLFIRI plus 
cetuximab

Third line 
irinotecan plus 
cetuximab

Third line 
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Third line 
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Figure 2. Schematic overview of the Cetuximab After Progression in KRAS wIld-type colorectal cancer patients-Gruppo Oncologico dell’ Italia Meridionale (CAPRI
2-GOIM) trial. A proof-of-concept prospective clinical study of sequential treatments of metastatic colorectal cancer (mCRC) patients with RAS and BRAF wild-type
(WT) tumors.
EGFR, epidermal growth factor receptor; PD, progressive disease; RAS mut, RAS mutant tumors.
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