266 research outputs found

    MicroRNA regulation of endothelial homeostasis and commitment—implications for vascular regeneration strategies using stem cell therapies

    Get PDF
    Human embryonic (hESC) and induced pluripotent (hiPSC) stem cells have broad therapeutic potential in the treatment of a range of diseases, including those of the vascular system. Both hESCs and hiPSCs have the capacity for indefinite self-renewal, in addition to their ability to differentiate into any adult cell type. These cells could provide a potentially unlimited source of cells for transplantation and, therefore, provide novel treatments, e.g. in the production of endothelial cells for vascular regeneration. MicroRNAs are short, noncoding RNAs that act posttranscriptionally to control gene expression and thereby exert influence over a wide range of cellular processes, including maintenance of pluripotency and differentiation. Expression patterns of these small RNAs are tissue specific, and changes in microRNA levels have often been associated with disease states in humans, including vascular pathologies. Here, we review the roles of microRNAs in endothelial cell function and vascular disease, as well as their role in the differentiation of pluripotent stem cells to the vascular endothelial lineage. Furthermore, we discuss the therapeutic potential of stem cells and how knowledge and manipulation of microRNAs in stem cells may enhance their capacity for vascular regeneration

    Post-transcriptional homeostasis and regulation of MCM2–7 in mammalian cells

    Get PDF
    The MiniChromosome Maintenance 2-7 (MCM2-7) complex provides essential replicative helicase function. Insufficient MCMs impair the cell cycle and cause genomic instability (GIN), leading to cancer and developmental defects in mice. Remarkably, depletion or mutation of one Mcm can decrease all Mcm levels. Here, we use mice and cells bearing a GIN-causing hypomophic allele of Mcm4 (Chaos3), in conjunction with disruption alleles of other Mcms, to reveal two new mechanisms that regulate MCM protein levels and pre-RC formation. First, the Mcm4Chaos3 allele, which disrupts MCM4:MCM6 interaction, triggers a Dicer1 and Drosha-dependent ∼40% reduction in Mcm2–7 mRNAs. The decreases in Mcm mRNAs coincide with up-regulation of the miR-34 family of microRNAs, which is known to be Trp53-regulated and target Mcms. Second, MCM3 acts as a negative regulator of the MCM2–7 helicase in vivo by complexing with MCM5 in a manner dependent upon a nuclear-export signal-like domain, blocking the recruitment of MCMs onto chromatin. Therefore, the stoichiometry of MCM components and their localization is controlled post-transcriptionally at both the mRNA and protein levels. Alterations to these pathways cause significant defects in cell growth reflected by disease phenotypes in mice

    Mechanisms and Therapeutic Targets of Cardiac Regeneration: Closing the Age Gap

    Get PDF
    While a regenerative response is limited in the mammalian adult heart, it has been recently shown that the neonatal mammalian heart possesses a marked but transient capacity for regeneration after cardiac injury, including myocardial infarction. These findings evidence that the mammalian heart still retains a regenerative capacity and highlights the concept that the expression of distinct molecular switches (that activate or inhibit cellular mechanisms regulating tissue development and regeneration) vary during different stages of life, indicating that cardiac regeneration is an age-dependent process. Thus, understanding the mechanisms underpinning regeneration in the neonatal-infarcted heart is crucial to develop new treatments aimed at improving cardiovascular regeneration in the adult. The present review summarizes the current knowledge on the pathways and factors that are known to determine cardiac regeneration in the neonatal-infarcted heart. In particular, we will focus on the effects of microRNA manipulation in regulating cardiomyocyte proliferation and regeneration, as well as on the role of the Hippo signaling pathway and Meis1 in the regenerative response of the neonatal-infarcted heart. We will also briefly comment on the role of macrophages in scar formation of the adult-infarcted heart or their contribution for scar-free regeneration of the neonatal mouse heart after myocardial infarction. Although additional research is needed in order to identify other factors that regulate cardiovascular regeneration, these pathways represent potential therapeutic targets for rejuvenation of aging hearts and for improving regeneration of the adult-infarcted heart

    The predictive value of microRNA-126 in relation to first line treatment with capecitabine and oxaliplatin in patients with metastatic colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNA-126 is the only microRNA (miRNA) known to be endothelial cell-specific influencing angiogenesis in several ways. The aim of the present study was to analyse the possible predictive value of miRNA-126 in relation to first line capecitabine and oxaliplatin (XELOX) in patients with metastatic colorectal cancer (mCRC).</p> <p>Methods</p> <p>The study included 89 patients with mCRC. <it>In situ </it>hybridization (ISH) was performed to detect miRNA-126 in formalin-fixed paraffin embedded tissue from primary tumours. The expression of miRNA-126, area per image (μm<sup>2</sup>), was measured using image analysis. Clinical response was evaluated according to RECIST. Progression free survival (PFS) was compared using the Kaplan-Meier method and the log rank test. Tumours were classified as low or high miRNA-126 expressing tumours using the median value from the patients with response as cut-off.</p> <p>Results</p> <p>The median miRNA-126 expression level was significantly higher in patients responding to XELOX, 3629 μm<sup>2 </sup>(95% CI, 2566-4846), compared to the patients not responding, 1670 μm<sup>2 </sup>(95% CI, 1436-2041), <it>p </it>< 0.0001. The positive predictive value was 90%, and the negative predictive value was 71%. The median PFS of patients with high expressing tumours was 11.5 months (95% CI, 9.0-12.7 months) compared to 6.0 months (95% CI, 4.8-6.9 months) for patients with low expressing tumours, <it>p </it>< 0.0001.</p> <p>Conclusions</p> <p>Angiogenesis quantified by ISH of miRNA-126 was related to response to first line XELOX in patients with mCRC, translating to a significant difference in PFS. The predictive value of miRNA-126 remains to be further elucidated in prospective studies.</p

    Serum microrna biomarkers for detection of non-small cell lung cancer

    Get PDF
    Non small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality world-wide and the majority of cases are diagnosed at late stages of disease. There is currently no cost-effective screening test for NSCLC, and the development of such a test is a public health imperative. Recent studies have suggested that chest computed tomography screening of patients at high risk of lung cancer can increase survival from disease, however, the cost effectiveness of such screening has not been established. In this Phase I/II biomarker study we examined the feasibility of using serum miRNA as biomarkers of NSCLC using RT-qPCR to examine the expression of 180 miRNAs in sera from 30 treatment naive NSCLC patients and 20 healthy controls. Receiver operating characteristic curves (ROC) and area under the curve were used to identify differentially expressed miRNA pairs that could distinguish NSCLC from healthy controls. Selected miRNA candidates were further validated in sera from an additional 55 NSCLC patients and 75 healthy controls. Examination of miRNA expression levels in serum from a multi-institutional cohort of 50 subjects (30 NSCLC patients and 20 healthy controls) identified differentially expressed miRNAs. A combination of two differentially expressed miRNAs miR-15b and miR-27b, was able to discriminate NSCLC from healthy controls with sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 100% in the training set. Upon further testing on additional 130 subjects (55 NSCLC and 75 healthy controls), this miRNA pair predicted NSCLC with a specificity of 84% (95% CI 0.73-0.91), sensitivity of 100% (95% CI; 0.93-1.0), NPV of 100%, and PPV of 82%. These data provide evidence that serum miRNAs have the potential to be sensitive, cost-effective biomarkers for the early detection of NSCLC. Further testing in a Phase III biomarker study in is necessary for validation of these results. © 2012 Hennessey et al

    Detection of epithelial apoptosis in pelvic ileal pouches for ulcerative colitis and familial adenomatous polyposis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ileal pouch-anal anastomosis (IPAA) is the surgical procedure of choice for patients with refractory ulcerative colitis (UC) and for familial adenomatous polyposis (FAP) with many rectal polyps. Pouchitis is one of the more frequent complications after IPAA in UC patients; however, it is rare in FAP.</p> <p>Objective</p> <p>Evaluate pro-apoptotic activity in endoscopically and histological normal mucosa of the ileal pouch in patients with UC and FAP.</p> <p>Methods</p> <p>Eighteen patients (nine with UC and nine with FAP) with J pouch after total rectocolectomy were studied. Biopsies were obtained from the mucosa of the pouch and from normal ileum. The specimens were snap-frozen and the expressions of Bax and Bcl-2 were determined by immunoblot of protein extracts and by immunohistochemistry analysis. FADD, Caspase-8, APAF-1 and Caspase-9 were evaluated by immunoprecipitation and immunoblot.</p> <p>Results</p> <p>Patients with UC had significantly higher protein levels of Bax and APAF-1, Caspase-9 than patients with FAP, but were similar to controls. The expressions of Bcl-2 and FADD, Caspase-8 were similar in the groups. Immunohistochemistry for Bax showed less intensity of immunoreactions in FAP than in UC and Controls. Bcl-2 immunostaining was similar among the groups.</p> <p>Conclusion</p> <p>Patients with FAP present lower levels of pro-apoptotic proteins in all methods applied, even in the absence of clinical and endoscopic pouchitis and dysplasia in the histological analysis. These findings may explain a tendency of up-regulation of apoptosis in UC patients, resulting in higher rates of progression to pouchitis in these patients, which could correlate with mucosal atrophy that occurs in inflamed tissue. However, FAP patients had low pro-apoptotic activity in the mucosa, and it could explain the tendency to low cell turn over and presence of adenomas in this syndrome.</p

    In Search of an Uncultured Human-Associated TM7 Bacterium in the Environment

    Get PDF
    We have identified an environmental bacterium in the Candidate Division TM7 with ≥98.5% 16S rDNA gene homology to a group of TM7 bacteria associated with the human oral cavity and skin. The environmental TM7 bacterium (referred to as TM7a-like) was readily detectable in wastewater with molecular techniques over two years of sampling. We present the first images of TM7a-like cells through FISH technique and the first images of any TM7 as viable cells through the STARFISH technique. In situ quantification showed TM7 concentration in wastewater up to five times greater than in human oral sites. We speculate that upon further characterization of the physiology and genetics of the TM7a-like bacterium from environmental sources and confirmation of its genomic identity to human-associated counterparts it will serve as model organisms to better understand its role in human health. The approach proposed circumvents difficulties imposed by sampling humans, provides an alternative strategy to characterizing some diseases of unknown etiology, and renders a much needed understanding of the ecophysiological role hundreds of unique Bacteria and Archaea strains play in mixed microbial communities

    MicroRNA-21 Exhibits Antiangiogenic Function by Targeting RhoB Expression in Endothelial Cells

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are endogenously expressed small non-coding RNAs that regulate gene expression at post-transcriptional level. The recent discovery of the involvement of these RNAs in the control of angiogenesis renders them very attractive in the development of new approaches for restoring the angiogenic balance. Whereas miRNA-21 has been demonstrated to be highly expressed in endothelial cells, the potential function of this miRNA in angiogenesis has never been investigated. METHODOLOGY/PRINCIPAL FINDINGS: We first observed in endothelial cells a negative regulation of miR-21 expression by serum and bFGF, two pro-angiogenic factors. Then using in vitro angiogenic assays, we observed that miR-21 acts as a negative modulator of angiogenesis. miR-21 overexpression reduced endothelial cell proliferation, migration and the ability of these cells to form tubes whereas miR-21 inhibition using a LNA-anti-miR led to opposite effects. Expression of miR-21 in endothelial cells also led to a reduction in the organization of actin into stress fibers, which may explain the decrease in cell migration. Further mechanistic studies showed that miR-21 targets RhoB, as revealed by a decrease in RhoB expression and activity in miR-21 overexpressing cells. RhoB silencing impairs endothelial cell migration and tubulogenesis, thus providing a possible mechanism for miR-21 to inhibit angiogenesis. Finally, the therapeutic potential of miR-21 as an angiogenesis inhibitor was demonstrated in vivo in a mouse model of choroidal neovascularization. CONCLUSIONS/SIGNIFICANCE: Our results identify miR-21 as a new angiogenesis inhibitor and suggest that inhibition of cell migration and tubulogenesis is mediated through repression of RhoB

    MicroRNA Let-7f Inhibits Tumor Invasion and Metastasis by Targeting MYH9 in Human Gastric Cancer

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are important regulators that play key roles in tumorigenesis and tumor progression. A previous report has shown that let-7 family members can act as tumor suppressors in many cancers. Through miRNA array, we found that let-7f was downregulated in the highly metastatic potential gastric cancer cell lines GC9811-P and SGC7901-M, when compared with their parental cell lines, GC9811 and SGC7901-NM; however, the mechanism was not clear. In this study, we investigate whether let-7f acts as a tumor suppressor to inhibit invasion and metastasis in gastric cancers. METHODOLOGY/PRINCIPAL: Real-time PCR showed decreased levels of let-7f expression in metastatic gastric cancer tissues and cell lines that are potentially highly metastatic. Cell invasion and migration were significantly impaired in GC9811-P and SGC7901-M cell lines after transfection with let-7f-mimics. Nude mice with xenograft models of gastric cancer confirmed that let-7f could inhibit gastric cancer metastasis in vivo after transfection by the lentivirus pGCsil-GFP- let-7f. Luciferase reporter assays demonstrated that let-7f directly binds to the 3'UTR of MYH9, which codes for myosin IIA, and real-time PCR and Western blotting further indicated that let-7f downregulated the expression of myosin IIA at the mRNA and protein levels. CONCLUSIONS/SIGNIFICANCE: Our study demonstrated that overexpression of let-7f in gastric cancer could inhibit invasion and migration of gastric cancer cells through directly targeting the tumor metastasis-associated gene MYH9. These data suggest that let-7f may be a novel therapeutic candidate for gastric cancer, given its ability to reduce cell invasion and metastasis

    Intestinal Microbiota Composition of Interleukin-10 Deficient C57BL/6J Mice and Susceptibility to Helicobacter hepaticus-Induced Colitis

    Get PDF
    The mouse pathobiont Helicobacter hepaticus can induce typhlocolitis in interleukin-10-deficient mice, and H. hepaticus infection of immunodeficient mice is widely used as a model to study the role of pathogens and commensal bacteria in the pathogenesis of inflammatory bowel disease. C57BL/6J Il10[superscript −/−] mice kept under specific pathogen-free conditions in two different facilities (MHH and MIT), displayed strong differences with respect to their susceptibilities to H. hepaticus-induced intestinal pathology. Mice at MIT developed robust typhlocolitis after infection with H. hepaticus, while mice at MHH developed no significant pathology after infection with the same H. hepaticus strain. We hypothesized that the intestinal microbiota might be responsible for these differences and therefore performed high resolution analysis of the intestinal microbiota composition in uninfected mice from the two facilities by deep sequencing of partial 16S rRNA amplicons. The microbiota composition differed markedly between mice from both facilities. Significant differences were also detected between two groups of MHH mice born in different years. Of the 119 operational taxonomic units (OTUs) that occurred in at least half the cecum or colon samples of at least one mouse group, 24 were only found in MIT mice, and another 13 OTUs could only be found in MHH samples. While most of the MHH-specific OTUs could only be identified to class or family level, the MIT-specific set contained OTUs identified to genus or species level, including the opportunistic pathogen, Bilophila wadsworthia. The susceptibility to H. hepaticus-induced colitis differed considerably between Il10[superscript −/−] mice originating from the two institutions. This was associated with significant differences in microbiota composition, highlighting the importance of characterizing the intestinal microbiome when studying murine models of IBD.National Institutes of Health (U.S.) (Grant NIH P01-CA26731)National Institutes of Health (U.S.) (Grant NIH P30ES0026731)National Institutes of Health (U.S.) (Grant NIH R01-OD011141
    corecore