498 research outputs found

    Selective staining and eradication of cancer cells by protein-carrying DARPin-functionalized liposomes

    Get PDF
    Since their discovery, liposomes have been widely employed in biomedical research. These nano-size spherical vesicles consisting one or few phospholipid bilayers surrounding an aqueous core are capable of carrying a wide variety of bioactive compounds, including drugs, peptides, nucleic acids, proteins and others. Despite considerable success achieved in synthesis of liposome constructs containing bioactive compounds, preparation of ligand-targeted liposomes comprising large quantities of encapsulated proteins that are capable of affecting pathological cells still remains a big challenge. Here we described a novel method for preparation of small (80\u201390 nm in diameter) unilamellar liposomes containing very large quantities (thousands of protein molecules per liposome) of heme-containing cytochrome c, highly fluorescent mCherry and highly toxic PE40 (Pseudomonas aeruginosa Exotoxin A domain). Efficient encapsulation of the proteins was achieved through electrostatic interaction between positively charged proteins (at pH lower than pI) and negatively charged liposome membrane. The proteoliposomes containing large quantities of mCherry or PE40 and functionalized with designed ankyrin repeat protein (DARPin)_9-29, which targets human epidermal growth factor receptor 2 (HER2) were shown to specifically stain and kill in sub-nanomolar concentrations HER2-positive cells, overexpressing HER2, respectively. Specific staining and eradication of the receptor-positive cells demonstrated here makes the DARPin-functionalized liposomes carrying large quantities of fluorescent and/or toxic proteins a promising candidate for tumor detection and therapy

    The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor

    Get PDF
    Cuttlebone, the sophisticated buoyancy device of cuttlefish, is made of extensive superposed chambers that have a complex internal arrangement of calcified pillars and organic membranes. It has not been clear how this structure is assembled. We find that the membranes result from a myriad of minor membranes initially filling the whole chamber, made of nanofibres evenly oriented within each membrane and slightly rotated with respect to those of adjacent membranes, producing a helical arrangement. We propose that the organism secretes a chitin-protein complex, which self-organizes layer-by-layer as a cholesteric liquid crystal, whereas the pillars are made by viscous fingering. The liquid crystallization mechanism permits us to homologize the elements of the cuttlebone with those of other coleoids and with the nacreous septa and the shells of nautiloids. These results challenge our view of this ultra-light natural material possessing desirable mechanical, structural and biological properties, suggesting that two self-organizing physical principles suffice to understand its formation.Spanish Ministerio de Ciencia e Innovacion [CGL2010-20748-CO2-01, CGL2013-48247-P, FIS2013-48444-C2-2-P]; Andalusian Consejeria de Innovacion Ciencia y Tecnologia [RNM6433]; (Sepiatech, PROMAR program) of the Portuguese Ministerio da Agricultura e do Mar, Portugal [31.03.05.FEP.002]; Junta de Andalucia [RNM363]; FP7 COST Action of the European Community. [TD0903]info:eu-repo/semantics/publishedVersio

    A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions

    Full text link
    Neural connectivity at the cellular and mesoscopic level appears very specific and is presumed to arise from highly specific developmental mechanisms. However, there are general shared features of connectivity in systems as different as the networks formed by individual neurons in Caenorhabditis elegans or in rat visual cortex and the mesoscopic circuitry of cortical areas in the mouse, macaque, and human brain. In all these systems, connection length distributions have very similar shapes, with an initial large peak and a long flat tail representing the admixture of long-distance connections to mostly short-distance connections. Furthermore, not all potentially possible synapses are formed, and only a fraction of axons (called filling fraction) establish synapses with spatially neighboring neurons. We explored what aspects of these connectivity patterns can be explained simply by random axonal outgrowth. We found that random axonal growth away from the soma can already reproduce the known distance distribution of connections. We also observed that experimentally observed filling fractions can be generated by competition for available space at the target neurons--a model markedly different from previous explanations. These findings may serve as a baseline model for the development of connectivity that can be further refined by more specific mechanisms.Comment: 31 pages (incl. supplementary information); Cerebral Cortex Advance Access published online on May 12, 200

    The importance of non-accessible crosslinks and solvent accessible surface distance in modelling proteins with restraints from crosslinking mass spectrometry

    Get PDF
    Crosslinking coupled to mass spectrometry (XL-MS) is becoming an increasingly popular technique for modelling protein monomers and complexes. The distance restraints garnered from these experiments can be used alone or as part of an integrative modelling approach, incorporating data from many sources. However, modelling practices are varied and the difference in their usefulness is not clear. Here, we develop a new scoring procedure for models based on crosslink data - Matched and Non-accessible Crosslink score (MNXL). We compare its performance with that of other commonly-used scoring functions (Number of Violations and Sum of Violation Distances) on a benchmark of 14 protein domains, each with 300 corresponding models (at various levels of quality) and associated, previously published, experimental crosslinks (XLdb). The distances between crosslinked lysines are calculated either as Euclidean distances or Solvent Accessible Surface Distances (SASD) using a newly-developed method (Jwalk). MNXL takes into account whether a crosslink is non-accessible, i.e., an experimentally observed crosslink has no corresponding SASD in a model due to buried lysines. This metric alone is shown to have a significant impact on modelling performance and is a concept that is not considered at present if only Euclidean distances are used. Additionally, a comparison between modelling with SASD or Euclidean distance shows that SASD is superior, even when factoring out the effect of the non-accessible crosslinks. Our benchmarking also shows that MNXL outperforms the other tested scoring functions in terms of precision and correlation to Ca-RMSD from the crystal structure. We finally test the MNXL at different levels of crosslink recovery (i.e. the percentage of crosslinks experimentally observed out of all theoretical ones) and set a target recovery of ~20% after which the performance plateaus

    Reconstructing the three-dimensional GABAergic microcircuit of the striatum

    Get PDF
    A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100 mu m of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are interconnected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study

    BALL - biochemical algorithms library 1.3

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Biochemical Algorithms Library (BALL) is a comprehensive rapid application development framework for structural bioinformatics. It provides an extensive C++ class library of data structures and algorithms for molecular modeling and structural bioinformatics. Using BALL as a programming toolbox does not only allow to greatly reduce application development times but also helps in ensuring stability and correctness by avoiding the error-prone reimplementation of complex algorithms and replacing them with calls into the library that has been well-tested by a large number of developers. In the ten years since its original publication, BALL has seen a substantial increase in functionality and numerous other improvements.</p> <p>Results</p> <p>Here, we discuss BALL's current functionality and highlight the key additions and improvements: support for additional file formats, molecular edit-functionality, new molecular mechanics force fields, novel energy minimization techniques, docking algorithms, and support for cheminformatics.</p> <p>Conclusions</p> <p>BALL is available for all major operating systems, including Linux, Windows, and MacOS X. It is available free of charge under the Lesser GNU Public License (LPGL). Parts of the code are distributed under the GNU Public License (GPL). BALL is available as source code and binary packages from the project web site at <url>http://www.ball-project.org</url>. Recently, it has been accepted into the debian project; integration into further distributions is currently pursued.</p

    Ultrastructure of the Interlamellar Membranes of the Nacre of the Bivalve Pteria hirundo, Determined by Immunolabelling

    Get PDF
    The current model for the ultrastructure of the interlamellar membranes of molluscan nacre imply that they consist of a core of aligned chitin fibers surrounded on both sides by acidic proteins. This model was based on observations taken on previously demineralized shells, where the original structure had disappeared. Despite other earlier claims, no direct observations exist in which the different components can be unequivocally discriminated. We have applied different labeling protocols on non-demineralized nacreous shells of the bivalve Pteria. With this method, we have revealed the disposition and nature of the different fibers of the interlamellar membranes that can be observed on the surface of the nacreous shell of the bivalve Pteria hirundo by high resolution scanning electron microscopy (SEM). The minor chitin component consists of very thin fibers with a high aspect ratio and which are seemingly disoriented. Each fiber has a protein coat, which probably forms a complex with the chitin. The chitin-protein-complex fibers are embedded in an additional proteinaceous matrix. This is the first time in which the sizes, positions and distribution of the chitin fibers have been observed in situ.AJOM was financed by a PhD Grant of the FPI program from the Spanish Ministerio de Ciencia e Innovación; TCB's PhD Grant belonged to the FPU Program of the same Ministry. AJOM and AGC were supported by Projects CGL2010-20748-C02-01 and CGL2013-48247-P of the mentioned Ministry, and RNM6433 of the Consejería de Economía, Innovación y Ciencia of the Junta de Andalucía. The European COST Action TD0903 contributed via two Short Term Scientific Missions to AJOM in FM's lab in Dijon

    Diverse Modes of Axon Elaboration in the Developing Neocortex

    Get PDF
    The development of axonal arbors is a critical step in the establishment of precise neural circuits, but relatively little is known about the mechanisms of axonal elaboration in the neocortex. We used in vivo two-photon time-lapse microscopy to image axons in the neocortex of green fluorescent protein-transgenic mice over the first 3 wk of postnatal development. This period spans the elaboration of thalamocortical (TC) and Cajal-Retzius (CR) axons and cortical synaptogenesis. Layer 1 collaterals of TC and CR axons were imaged repeatedly over time scales ranging from minutes up to days, and their growth and pruning were analyzed. The structure and dynamics of TC and CR axons differed profoundly. Branches of TC axons terminated in small, bulbous growth cones, while CR axon branch tips had large growth cones with numerous long filopodia. TC axons grew rapidly in straight paths, with frequent interstitial branch additions, while CR axons grew more slowly along tortuous paths. For both types of axon, new branches appeared at interstitial sites along the axon shaft and did not involve growth cone splitting. Pruning occurred via retraction of small axon branches (tens of microns, at both CR and TC axons) or degeneration of large portions of the arbor (hundreds of microns, for TC axons only). The balance between growth and retraction favored overall growth, but only by a slight margin. Given the identical layer 1 territory upon which CR and TC axons grow, the differences in their structure and dynamics likely reflect distinct intrinsic growth programs for axons of long projection neurons versus local interneurons
    corecore