548 research outputs found

    Non-Markovian Configurational Diffusion and Reaction Coordinates for Protein Folding

    Full text link
    The non-Markovian nature of polymer motions is accounted for in folding kinetics, using frequency-dependent friction. Folding, like many other problems in the physics of disordered systems, involves barrier crossing on a correlated energy landscape. A variational transition state theory (VTST) that reduces to the usual Bryngelson-Wolynes Kramers approach when the non-Markovian aspects are neglected is used to obtain the rate, without making any assumptions regarding the size of the barrier, or the memory time of the friction. The transformation to collective variables dependent on the dynamics of the system allows the theory to address the controversial issue of what are ``good'' reaction coordinates for folding.Comment: 9 pages RevTeX, 3 eps-figures included, submitted to PR

    Protein dynamics with off-lattice Monte Carlo moves

    Full text link
    A Monte Carlo method for dynamics simulation of all-atom protein models is introduced, to reach long times not accessible to conventional molecular dynamics. The considered degrees of freedom are the dihedrals at Cα_\alpha-atoms. Two Monte Carlo moves are used: single rotations about torsion axes, and cooperative rotations in windows of amide planes, changing the conformation globally and locally, respectively. For local moves Jacobians are used to obtain an unbiased distribution of dihedrals. A molecular dynamics energy function adapted to the protein model is employed. A polypeptide is folded into native-like structures by local but not by global moves.Comment: 10 pages, 4 Postscript figures, uses epsf.sty and a4.sty; scheduled tentatively for Phys.Rev.E issue of 1 March 199

    The importance of non-accessible crosslinks and solvent accessible surface distance in modelling proteins with restraints from crosslinking mass spectrometry

    Get PDF
    Crosslinking coupled to mass spectrometry (XL-MS) is becoming an increasingly popular technique for modelling protein monomers and complexes. The distance restraints garnered from these experiments can be used alone or as part of an integrative modelling approach, incorporating data from many sources. However, modelling practices are varied and the difference in their usefulness is not clear. Here, we develop a new scoring procedure for models based on crosslink data - Matched and Non-accessible Crosslink score (MNXL). We compare its performance with that of other commonly-used scoring functions (Number of Violations and Sum of Violation Distances) on a benchmark of 14 protein domains, each with 300 corresponding models (at various levels of quality) and associated, previously published, experimental crosslinks (XLdb). The distances between crosslinked lysines are calculated either as Euclidean distances or Solvent Accessible Surface Distances (SASD) using a newly-developed method (Jwalk). MNXL takes into account whether a crosslink is non-accessible, i.e., an experimentally observed crosslink has no corresponding SASD in a model due to buried lysines. This metric alone is shown to have a significant impact on modelling performance and is a concept that is not considered at present if only Euclidean distances are used. Additionally, a comparison between modelling with SASD or Euclidean distance shows that SASD is superior, even when factoring out the effect of the non-accessible crosslinks. Our benchmarking also shows that MNXL outperforms the other tested scoring functions in terms of precision and correlation to Ca-RMSD from the crystal structure. We finally test the MNXL at different levels of crosslink recovery (i.e. the percentage of crosslinks experimentally observed out of all theoretical ones) and set a target recovery of ~20% after which the performance plateaus

    Establishing computational approaches towards identifying malarial allosteric modulators: a case study of plasmodium falciparum hsp70s

    Get PDF
    Combating malaria is almost a never-ending battle, as Plasmodium parasites develop resistance to the drugs used against them, as observed recently in artemisinin-based combination therapies. The main concern now is if the resistant parasite strains spread from Southeast Asia to Africa, the continent hosting most malaria cases. To prevent catastrophic results, we need to find non-conventional approaches. Allosteric drug targeting sites and modulators might be a new hope for malarial treatments. Heat shock proteins (HSPs) are potential malarial drug targets and have complex allosteric control mechanisms. Yet, studies on designing allosteric modulators against them are limited. Here, we identified allosteric modulators (SANC190 and SANC651) against P. falciparum Hsp70-1 and Hsp70-x, affecting the conformational dynamics of the proteins, delicately balanced by the endogenous ligands. Previously, we established a pipeline to identify allosteric sites and modulators. This study also further investigated alternative approaches to speed up the process by comparing all atom molecular dynamics simulations and dynamic residue network analysis with the coarse-grained (CG) versions of the calculations. Betweenness centrality (BC) profiles for PfHsp70-1 and PfHsp70-x derived from CG simulations not only revealed similar trends but also pointed to the same functional regions and specific residues corresponding to BC profile peaks

    Functional site prediction selects correct protein models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prediction of protein structure can be facilitated by the use of constraints based on a knowledge of functional sites. Without this information it is still possible to predict which residues are likely to be part of a functional site and this information can be used to select model structures from a variety of alternatives that would correspond to a functional protein.</p> <p>Results</p> <p>Using a large collection of protein-like decoy models, a score was devised that selected those with predicted functional site residues that formed a cluster. When tested on a variety of small <it>α</it>/<it>β</it>/<it>α </it>type proteins, including enzymes and non-enzymes, those that corresponded to the native fold were ranked highly. This performance held also for a selection of larger <it>α</it>/<it>β</it>/<it>α </it>proteins that played no part in the development of the method.</p> <p>Conclusion</p> <p>The use of predicted site positions provides a useful filter to discriminate native-like protein models from non-native models. The method can be applied to any collection of models and should provide a useful aid to all modelling methods from <it>ab initio </it>to homology based approaches.</p

    Role of bifidobacteria in the hydrolysis of chlorogenic acid

    Get PDF
    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds

    In vitro and In vivo antimycobacterial, hepatoprotective and immunomodulatory activity of Euclea natalensis and its mode of action

    Get PDF
    Ethnopharmacological relevance: The Natal gwarri or Natal ebony (Euclea natalensis A.DC.) is a deciduous tree found widespread throughout southern Africa, especially in Kwazulu-Natal and the southern cost. It has been widely used by indigenous communities such as the Zulus, Tsongas and Vendas for symptoms related to tuberculosis (TB). The decoctions made from the plant parts are administered for chest diseases to treat complications such as chest pains, bronchitis, pleurisy and asthma. TB is prevalent in immune-compromised patients and it is evident that TB-drugs cause hepatotoxicity. The objective of the present study was therefore to evaluate the antimycobacterial activity of the ethanolic extract of E. natalensis against TB and its hepatoprotective and immunomodulatory activities. Materials and methods: The antimycobacterial, antioxidant, hepatoprotective, immunomodulatory activity and cytotoxicity of the ethanolic extract of the shoots of E. natalensis were determined in vitro. The mechanism of action of the antituberculosis activity was determined by investigating the inhibitory effect on mycothiol disulfide reductase enzyme. Furthermore, the acute, sub-acute toxicity (50-2000 mg/kg) and antimycobacterial effect (300 mg/kg) of E. natalensis shoot extract were investigated in Balb/c mice. Hepatoprotective activity of the extract (50-150 mg/kg) was evaluated on isoniazid and rifampicin (50 mg/kg; i.p.) induced hepatic damage in a rat model. Results: The minimum inhibitory concentration of the extract was found to be 125 µg/ml against Mycobacterium tuberculosis. The extracts fifty percent inhibitory concentration (IC50) against 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical was found to be 22.55 µg/ml. The plant showed a hepatoprotective effect (50% at 12.5 µg/ml) and the ability to increase T-helper 1 cell cytokines; Interleukin 12, Interleukin 2 and Interferon α by up to 12 fold and the ability to decrease the T-helper 2 cell cytokine Interleukin 10 4 fold when compared to baseline cytokine production. No cellular toxicity was observed in primary peripheral blood mononuclear cells (PBMC's) and two secondary cell lines; U937 monocytes and Chang liver cells (a derivative of the HepG2 cell line). During mechanistic studies, the extract showed a 50% inhibition of mycothiol reductase activity at 38.62 µg/ml. During the acute and sub-acute studies, E. natalensis exhibited no toxic effect and the fifty percent lethal dose (LD50) was established to be above 2000 mg/kg. The extract was able to reduce the mycobacterial load (1.5-fold reduction) in infected mice. Isoniazid and rifampicin caused significant hepatic damage in rats, and the extract was able to reduce the toxicity by 15% and 40% at 50 and 150 mg/kg respectively. Conclusion: The present study supports the traditional usage of the plant against tuberculosis symptoms. The study showed the ability of E. natalensis shoot extract to inhibit mycobacterial growth, stimulate an appropriate immune response and have a hepatic protective effect. Due to the extract's significant results for hepatoprotective, immunomodulatory effects and antimycobacterial activity, it may prove to be effective to serve as an adjuvant for TB-patients

    Exploring the structural basis of conformational heterogeneity and autoinhibition of human cGMP-specific protein kinase Iα through computational modelling and molecular dynamics simulations.

    Get PDF
    Protein kinase Iα (PKGIα) is a pivotal cyclic guanosine monophosphate (cGMP) signalling protein. Major steps related to the structural plasticity of PKGIα have been inferred but the structural aspects of the auto-inhibition and multidomain tertiary organization of human PKGIα in active and inactive form are not clear. Here we combine computational comparative modelling, protein-protein docking and molecular dynamics (MD) simulations to investigate structural details of the repressed state of the catalytic domain of PKGIα. Exploration of the potential inhibitory conformation of the auto-inhibitory domain (AI) within the catalytic cleft reveals that the pseudo-substrate motif binds with residues of the glycine rich loop and substrate-binding lobe. Dynamic changes as a result of coupling of the catalytic and AI domains are also investigated. The three-dimensional homodimeric models of PKGIα in the active and inactive state indicate that PKGIα in its inactive-state attains a compact globular structure where cyclic nucleotide binding (CNB-A/B) domains are buried, whereas the catalytic domains are inaccessible with their substrate-binding pockets facing the N-terminal of CNB-A. Contrary to this, the active-state model of PKGIα shows an extended conformation where CNB-A/B domains are slightly rearranged and the catalytic domains of homodimer flanking the C-terminal with their substrate binding lobes free to entrap downstream proteins. These findings are consistent with previously reported static images of the multidomain organization of PKGIα. Structural insights pertaining to the conformational heterogeneity and auto-inhibition of PKGIα provided in this study may help to understand the dynamics-driven effective regulation of PKGIα
    corecore