52 research outputs found

    Encoding Velocity in a Photograph

    Get PDF
    Author Institution: Los Alamos National LaboratorySlides presented at the 2018 Photonic Doppler Velocimetry (PDV) Users Workshop, Drury Plaza Hotel, Santa Fe, New Mexico, May 16-18, 2018

    The Unique Origin of Colors of Armchair Carbon Nanotubes

    Full text link
    The colors of suspended metallic colloidal particles are determined by their size-dependent plasma resonance, while those of semiconducting colloidal particles are determined by their size-dependent band gap. Here, we present a novel case for armchair carbon nanotubes, suspended in aqueous medium, for which the color depends on their size-dependent excitonic resonance, even though the individual particles are metallic. We observe distinct colors of a series of armchair-enriched nanotube suspensions, highlighting the unique coloration mechanism of these one-dimensional metals.Comment: 4 pages, 3 figure

    Chirality-Selective Excitation of Coherent Phonons in Carbon Nanotubes

    Full text link
    Using pre-designed trains of femtosecond optical pulses, we have selectively excited coherent phonons of the radial breathing mode of specific-chirality single-walled carbon nanotubes within an ensemble sample. By analyzing the initial phase of the phonon oscillations, we prove that the tube diameter initially increases in response to ultrafast photoexcitation. Furthermore, from excitation profiles, we demonstrate that an excitonic absorption peak of carbon nanotubes periodically oscillates as a function of time when the tube diameter undergoes radial breathing mode oscillations.Comment: 4 pages, 4 figure

    Polarization dependence of coherent phonon generation and detection in highly-aligned single-walled carbon nanotubes

    Full text link
    We have investigated the polarization dependence of the generation and detection of radial breathing mode (RBM) coherent phonons (CP) in highly-aligned single-walled carbon nanotubes. Using polarization-dependent pump-probe differential-transmission spectroscopy, we measured RBM CPs as a function of angle for two different geometries. In Type I geometry, the pump and probe polarizations were fixed, and the sample orientation was rotated, whereas, in Type II geometry, the probe polarization and sample orientation were fixed, and the pump polarization was rotated. In both geometries, we observed a very nearly complete quenching of the RBM CPs when the pump polarization was perpendicular to the nanotubes. For both Type I and II geometries, we have developed a microscopic theoretical model to simulate CP generation and detection as a function of polarization angle and found that the CP signal decreases as the angle goes from 0 degrees (parallel to the tube) to 90 degrees (perpendicular to the tube). We compare theory with experiment in detail for RBM CPs created by pumping at the E44 optical transition in an ensemble of single-walled carbon nanotubes with a diameter distribution centered around 3 nm, taking into account realistic band structure and imperfect nanotube alignment in the sample

    Circular-Polarization Dependent Cyclotron Resonance in Large-Area Graphene in Ultrahigh Magnetic Fields

    Get PDF
    Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 um, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular-polarization dependent studies reveal strong p-type doping for as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the magnetic quantum limit, even though the sample is still p-type, due to graphene's linear dispersion and unique Landau level structure. These high-field studies therefore allow for a clear identification of cyclotron resonance features in large-area, low-mobility graphene samples.Comment: 9 pages, 3 figure

    Resonant Coherent Phonon Spectroscopy of Single-Walled Carbon Nanotubes

    Get PDF
    Using femtosecond pump-probe spectroscopy with pulse shaping techniques, one can generate and detect coherent phonons in chirality-specific semiconducting single-walled carbon nanotubes. The signals are resonantly enhanced when the pump photon energy coincides with an interband exciton resonance, and analysis of such data provides a wealth of information on the chirality-dependence of light absorption, phonon generation, and phonon-induced band structure modulations. To explain our experimental results, we have developed a microscopic theory for the generation and detection of coherent phonons in single-walled carbon nanotubes using a tight-binding model for the electronic states and a valence force field model for the phonons. We find that the coherent phonon amplitudes satisfy a driven oscillator equation with the driving term depending on photoexcited carrier density. We compared our theoretical results with experimental results on mod 2 nanotubes and found that our model provides satisfactory overall trends in the relative strengths of the coherent phonon signal both within and between different mod 2 families. We also find that the coherent phonon intensities are considerably weaker in mod 1 nanotubes in comparison with mod~2 nanotubes, which is also in excellent agreement with experiment.Comment: 21 pages, 22 figure

    Coherent Phonons in Carbon Nanotubes and Graphene

    Full text link
    We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. Using pulse shaping, one can selectively excite speci!c-chirality SWCNTs within an ensemble. G-mode CPs exhibit temperature-dependent dephasing via interaction with RBM phonons. Our microscopic theory derives a driven oscillator equation with a density-dependent driving term, which correctly predicts CP trends within and between (2n+m) families. We also find that the diameter can initially increase or decrease. Finally, we theoretically study the radial breathing like mode in graphene nanoribbons. For excitation near the absorption edge, the driving term is much larger for zigzag nanoribbons. We also explain how the armchair nanoribbon width changes in response to laser excitation.Comment: 48 pages, 41 figure

    Fundamental optical processes in armchair carbon nanotubes

    Get PDF
    Single-wall carbon nanotubes provide ideal model one-dimensional (1-D) condensed matter systems in which to address fundamental questions in many-body physics, while, at the same time, they are leading candidates for building blocks in nanoscale optoelectronic circuits. Much attention has been recently paid to their optical properties, arising from 1-D excitons and phonons, which have been revealed via photoluminescence, Raman scattering, and ultrafast optical spectroscopy of semiconducting carbon nanotubes. On the other hand, dynamical properties of metallic nanotubes have been poorly explored, although they are expected to provide a novel setting for the study of electronヨhole pairs in the presence of degenerate 1-D electrons. In particular, (n,n)-chirality, or armchair, metallic nanotubes are truly gapless with massless carriers, ideally suited for dynamical studies of TomonagaヨLuttinger liquids. Unfortunately, progress towards such studies has been slowed by the inherent problem of nanotube synthesis whereby both semiconducting and metallic nanotubes are produced. Here, we use post-synthesis separation methods based on density gradient ultracentrifugation and DNA-based ion-exchange chromatography to produce aqueous suspensions strongly enriched in armchair nanotubes. Through resonant Raman spectroscopy of the radial breathing mode phonons, we provide macroscopic and unambiguous evidence that density gradient ultracentrifugation can enrich ensemble samples in armchair nanotubes. Furthermore, using conventional, optical absorption spectroscopy in the nearinfrared and visible range, we show that interband absorption in armchair nanotubes is strongly excitonic. Lastly, by examining the G-band mode in Raman spectra, we determine that observation of the broad, lower frequency (G!) feature is a result of resonance with non-armchair “metallic” nanotubes. These !ndings regarding the fundamental optical absorption and scattering processes in metallic carbon nanotubes lay the foundation for further spectroscopic studies to probe many-body physical phenomena in one dimension

    Magnetotransport in type-enriched single-wall carbon nanotube networks

    No full text
    Single-wall carbon nanotubes (SWCNTs) exhibit a wide range of physical phenomena depending on their chirality. Nanotube networks typically contain a broad mixture of chiralities, which prevents an in-depth understanding of SWCNT ensemble properties. In particular, electronic-type mixing (the simultaneous presence of semiconductor and metallic nanotubes) in SWCNT networks remains the single largest hurdle to developing a comprehensive view of ensemble nanotube electrical transport, a critical step toward their use in optoelectronics. Here, we systematically study temperature-dependent magnetoconductivity (MC) in networks of highly enriched semiconductor and metal SWCNT films. In the semiconductor-enriched network, we observe two-dimensional variable-range hopping conduction from 5 to 290 K. Low-temperature MC measurements reveal a large, negative MC from which we determine the wave-function localization length and Fermi energy density of states. In contrast, the metal-enriched film exhibits positive MC that increases with decreasing temperature, a behavior attributed to two-dimensional weak localization. Using this model, we determine the details of the carrier phase coherence and fit the temperature-dependent conductivity. These extensive measurements on type-enriched SWCNT networks provide insights that pave the way for the use of SWCNTs in solid-state devices
    corecore