Using pre-designed trains of femtosecond optical pulses, we have selectively
excited coherent phonons of the radial breathing mode of specific-chirality
single-walled carbon nanotubes within an ensemble sample. By analyzing the
initial phase of the phonon oscillations, we prove that the tube diameter
initially increases in response to ultrafast photoexcitation. Furthermore, from
excitation profiles, we demonstrate that an excitonic absorption peak of carbon
nanotubes periodically oscillates as a function of time when the tube diameter
undergoes radial breathing mode oscillations.Comment: 4 pages, 4 figure