71 research outputs found

    B-1a cells acquire their unique characteristics by bypassing the pre-BCR selection stage

    Get PDF
    B-1a cells are long-lived, self-renewing innate-like B cells that predominantly inhabit the peritoneal and pleural cavities. In contrast to conventional B-2 cells, B-1a cells have a receptor repertoire that is biased towards bacterial and self-antigens, promoting a rapid response to infection and clearing of apoptotic cells. Although B-1a cells are known to primarily originate from fetal tissues, the mechanisms by which they arise has been a topic of debate for many years. Here we show that in the fetal liver versus bone marrow environment, reduced IL-7R/STAT5 levels promote immunoglobulin kappa gene recombination at the early pro-B cell stage. As a result, differentiating B cells can directly generate a mature B cell receptor (BCR) and bypass the requirement for a pre-BCR and pairing with surrogate light chain. This 'alternate pathway' of development enables the production of B cells with self-reactive, skewed specificity receptors that are peculiar to the B-1a compartment. Together our findings connect seemingly opposing lineage and selection models of B-1a cell development and explain how these cells acquire their unique properties

    B-1a cells acquire their unique characteristics by bypassing the pre-BCR selection stage

    Get PDF
    B-1a cells are long-lived, self-renewing innate like B cells that predominantly inhabit the peritoneal and pleural cavities. In contrast to conventional B-2 cells they have a receptor repertoire that is biased towards bacterial and self-antigens, promoting a rapid response to infection and clearing of apoptotic cells. Although B-1a cells are known to primarily originate from fetal tissues the mechanisms by which they arise has been a topic of debate for many years. Here we show that in the fetal liver (FL) versus bone marrow (BM) environment, reduced IL-7R/STAT5 levels promote immunoglobulin kappa (Igk) recombination at the early pro-B cell stage. As a result, B cells can directly generate a mature B cell receptor (BCR) and bypass the requirement for a pre-BCR and pairing with surrogate light chain (SLC). This 'alternate pathway' of development enables the production of B cells with self reactive, skewed specificity receptors that are peculiar to the B-1a compartment. Together our findings connect seemingly opposing models of B-1a cell development and explain how these cells acquire their unique properties

    Germinal center reutilization by newly activated B cells

    Get PDF
    Germinal centers (GCs) are specialized structures in which B lymphocytes undergo clonal expansion, class switch recombination, somatic hypermutation, and affinity maturation. Although these structures were previously thought to contain a limited number of isolated B cell clones, recent in vivo imaging studies revealed that they are in fact dynamic and appear to be open to their environment. We demonstrate that B cells can colonize heterologous GCs. Invasion of primary GCs after subsequent immunization is most efficient when T cell help is shared by the two immune responses; however, it also occurs when the immune responses are entirely unrelated. We conclude that GCs are dynamic anatomical structures that can be reutilized by newly activated B cells during immune responses

    Network-based functional enrichment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account.</p> <p>Results</p> <p>Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i) determine which functions are enriched in a given network, ii) given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii) given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms.</p> <p>Conclusions</p> <p>We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are implemented in C++ and are freely available under the GNU General Public License at our supplementary website. Additionally, all our input data and results are available at <url>http://bioinformatics.cs.vt.edu/~murali/supplements/2011-incob-nbe/</url>.</p

    BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-κB pathway

    Get PDF
    By diversifying antibody biological effector functions, class switch DNA recombination has a central role in the maturation of the antibody response. Here we show that BCR-signalling synergizes with Toll-like receptor (TLR) signalling to induce class switch DNA recombination. BCR-signalling activates the non-canonical NF-κB pathway and enhances the TLR-dependent canonical NF-κB pathway, thereby inducing activation-induced cytidine deaminase (AID), which is critical for class switch DNA recombination. Escherichia coli lipopolysaccharide (LPS) triggers dual TLR4/BCR-signalling and induces hallmarks of BCR-signalling, including CD79a phosphorylation and Ca2+ mobilization, and activates both the NF-κB pathways to induce AID and class switch DNA recombination in a PI(3)K p85α-dependent fashion. CD40-signalling activates the two NF-κB pathways to induce AID and class switch DNA recombination independent of BCR-signalling. Finally, dual BCR/TLR-engaging NP–lipopolysaccharide effectively elicits class-switched NP-specific IgG3 and IgG2b in mice. Thus, by integrating signals of the non-canonical and canonical NF-κB pathways, BCR and TLRs synergize to induce AID and T-cell-independent class switch DNA recombination

    A Human IPS Model Implicates Embryonic B-Myeloid Fate Restriction as Developmental Susceptibility to B Acute Lymphoblastic Leukemia-Associated ETV6-RUNX1

    Get PDF
    ETV6-RUNX1 is associated with childhood acute B-lymphoblastic leukemia (cALL) functioning as a first-hit mutation that initiates a clinically silent pre-leukemia in utero. Because lineage commitment hierarchies differ between embryo and adult, and the impact of oncogenes is cell-context dependent, we hypothesized that the childhood affiliation of ETV6-RUNX1 cALL reflects its origins in a progenitor unique to embryonic life. We characterize the first emerging B cells in first-trimester human embryos, identifying a developmentally restricted CD19-IL-7R+ progenitor compartment, which transitions from a myeloid to lymphoid program during ontogeny. This developmental series is recapitulated in differentiating human pluripotent stem cells (hPSCs), thereby providing a model for the initiation of cALL. Genome-engineered hPSCs expressing ETV6-RUNX1 from the endogenous ETV6 locus show expansion of the CD19-IL-7R+ compartment, show a partial block in B lineage commitment, and produce proB cells with aberrant myeloid gene expression signatures and potential: features (collectively) consistent with a pre-leukemic state

    T cell receptor and cytokine signaling can function at different stages to establish and maintain transcriptional memory and enable T helper cell differentiation

    Get PDF
    Experienced T cells exhibit immunological memory via a rapid recall response, responding to restimulation much faster than naïve T cells. The formation of immunological memory starts during an initial slow response, when naïve T cells become transformed to proliferating T blast cells, and inducible immune response genes are reprogrammed as active chromatin domains. We demonstrated that these active domains are supported by thousands of priming elements which cooperate with inducible transcriptional enhancers to enable efficient responses to stimuli. At the conclusion of this response, a small proportion of these cells return to the quiescent state as long-term memory T cells. We proposed that priming elements can be established in a hit-and-run process dependent on the inducible factor AP-1, but then maintained by the constitutive factors RUNX1 and ETS-1. This priming mechanism may also function to render genes receptive to additional differentiation-inducing factors such as GATA3 and TBX21 that are encountered under polarizing conditions. The proliferation of recently activated T cells and the maintenance of immunological memory in quiescent memory T cells are also dependent on various cytokine signaling pathways upstream of AP-1. We suggest that immunological memory is established by T cell receptor signaling, but maintained by cytokine signaling
    corecore