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SUMMARY: 

B-1a cells are long-lived, self-renewing innate like B cells that predominantly inhabit the 

peritoneal and pleural cavities. In contrast to conventional B-2 cells they have a receptor 

repertoire that is biased towards bacterial and self-antigens, promoting a rapid response to 

infection and clearing of apoptotic cells. Although B-1a cells are known to primarily originate 

from fetal tissues the mechanisms by which they arise has been a topic of debate for many 

years. Here we show that in the fetal liver (FL) versus bone marrow (BM) environment, reduced 

IL-7R/STAT5 levels promote immunoglobulin kappa (Igk) recombination at the early pro-B cell 

stage. As a result, B cells can directly generate a mature B cell receptor (BCR) and bypass the 

requirement for a pre-BCR and pairing with surrogate light chain (SLC). This ‘alternate pathway’ 

of development enables the production of B cells with self reactive, skewed specificity receptors 

that are peculiar to the B-1a compartment. Together our findings connect seemingly opposing 

models of B-1a cell development and explain how these cells acquire their unique properties. 

 

 

  

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/214908doi: bioRxiv preprint first posted online Nov. 13, 2017; 

http://dx.doi.org/10.1101/214908
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3

INTRODUCTION: 

B-CLL is the most common form of adult leukemia in the western world1. In the early 1980s, the 

T-cell antigen CD5 (Ly-1) was identified on the surface of cancerous B-cells in patients with B-

CLL2,3. This observation led to the search for normal CD5+ B-cell counterparts to potentially 

determine the cancer cell of origin. As a result of these efforts, CD5+ B cells, otherwise known 

as B-1a cells, were discovered in mice 4,5. Further characterization of CD5+ B-1a B cells 

revealed that they are long-lived, self-renewing cells that predominantly reside in the pleural and 

peritoneal cavities where they produce natural polyreactive IgM antibodies with a biased, 

autoreactive repertoire. In contrast to conventional B-2 cells, B-1a cells produce antibodies with 

reduced junctional diversity and less somatic hypermutation 6. Furthermore, Igh VH gene 

rearrangements favor VH12 segment usage 7, generating antibodies that interact with 

phosphatidylcholine (PtC), a major lipid in the protective mucus layer of the gastrointestinal tract 

that is also present in the membranes of diverse bacteria. Thus, the B-1a receptor repertoire is 

biased towards bacterial and self-antigens, which is important for mounting a rapid immune 

response to infection and in the clearing of apoptotic cells8–10.  Because B-1a cells are found in 

preimmune mice, they function as an important first line of defense against bacterial pathogens. 

These characteristics distinguish B-1a cells from conventional B-2 cells, which have a highly 

diverse receptor repertoire that is important for mediating adaptive immunity.  

 Although B-1a cells were discovered in the early 1990s, their origin has been hotly 

debated since, and despite the efforts of numerous labs this remains an unresolved issue. The 

controversy has mainly been centered on two opposing models, the lineage model and the 

selection model. The lineage model proposes that a distinct B-1 progenitor cell gives rise to B-

1a cells, while the selection model favors the idea that a common B cell progenitor can acquire 

a B-1a or a B-2 fate depending on the type of antigen it recognizes 9,11. Support for the lineage 

model comes from early reconstitution experiments, which reveal that fetal tissues are much 

more efficient at generating B-1a cells in irradiated recipient mice than adult bone marrow 
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counterparts12. Furthermore, the first wave of B-1a cells was shown to originate in early 

embryos in an HSC-independent manner 13–17. However, cellular barcoding experiments 

demonstrate that a single progenitor cell can give rise to both B-1a and B-2 cells 18 challenging 

the notion that B-1a cells arise from a distinct lineage. Moreover, the finding that B-1a cells have 

a restricted and biased receptor repertoire provides support for a selection model 9,19.  

Investigations have also focused on the molecular switches that influence CD5+ B-1a 

cell fate. In this context, a lin28b/let7 axis has been characterized 20–22 which impacts B-1a 

development. The lin28b and let7 miRNAs respectively promote and inhibit the expression of 

the transcription factor, Arid3a, which in turn can drive the development of CD5+B-1a cells 21,22. 

Nonetheless, the B cell receptor (BCR) repertoire of the resulting cells do not include PtC 

specific antibodies that are characteristic of a typical B-1a cell compartment 21. Thus, enforced 

expression of Arid3a fails to fully explain how B-1a cells develop. Another transcription factor, 

BHLHE41 has also been shown to be important in B-1a cell biology 23. Specifically, cells 

deficient in this transcription factor lose B-1a cells expressing VH12/Vk4 PtC specific receptors, 

have impaired BCR signaling, increased proliferation and apoptosis. BHLHE41 therefore plays 

an important role in B-1a maintenance by regulating self-renewal and BCR repertoire; however, 

it is not known whether its forced expression can drive development of these cells. 

In the fetus, B cell development takes place in the liver and moves to the bone marrow 

after birth. Each stage of development is marked by a particular rearrangement event that drives 

differentiation forward. These recombination events occur in a stage specific manner. The first 

step involves the joining of the immunoglobulin heavy-chain (Igh) DH and JH gene segments 

within pre-pro B cells. Rearrangement continues at the pro-B cell stage where VH-to-DJH joining 

is both initiated and completed. Rearrangement of the immunoglobulin light-chain loci, Igk or Igl 

occurs at the subsequent pre-B cell stage of development. Igh and Igk rearrangement is 

separated by a proliferative burst of large pre-B cells that allows individual cells that have 

successfully rearranged their heavy-chain to clonally expand. At the following small pre-B cell 
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stage, each B cell undergoes a distinct Igk recombination event 24. Ultimately, this results in 

unique heavy and light-chain pairs that expand the antigen receptor repertoire. The successful 

pairing of immunoglobulin heavy-chain with surrogate light chain (SLC) forms the pre B cell 

receptor (pre-BCR), which is required for expansion of large pre-B cells and subsequent 

differentiation to the small pre-B cell stage where Igk recombination occurs. Since SLC pairs 

poorly with autoreactive heavy-chains, the pre-BCR provides a mechanism for negative 

selection of self-reactive B cells 25,26. 

However as noted early on, in a small fraction of B cell progenitors in the bone marrow 

Igk rearrangements occur prior to rearrangements at Igh and independent of SLCs27–30. In 

addition, in the absence of SLCs and thus pre-BCR expression, an autoreactive BCR can drive 

B cell development efficiently to the stage of the immature B cell, where BCR diversification and 

counterselection of autoreactivity is achieved through the process of receptor editing. This has 

led to a model in which early B cell development is driven by a positive signal from the pre-BCR 

(in the majority of progenitors) or an autoreactive BCR (in a minority of cells), with the pre-BCR 

having evolved as a surrogate autoreactive BCR 31,32. 

Downstream of pre-BCR signaling, IL-7 receptor (IL-7R) signaling is extinguished at the 

small pre-B cell stage. This is noteworthy because the IL-7R signaling pathway is responsible 

for directing the sequential ordering of recombination events, i.e. on heavy-chain gene followed 

by light-chain gene rearrangement in classical B cell development 33,34.  IL-7 is a cytokine 

secreted by stromal cells within the bone marrow where development takes place throughout 

the post-natal and adult life of the animal. In murine bone marrow, development past the pre-

pro-B cell stage stringently requires IL-7R 35,36. In contrast, B cell development within the fetal 

liver can occur independent of IL-7 37,38. In terms of directing recombination, IL-7 and its 

downstream signaling component STAT5, have been shown to promote Igh accessibility and 

recombination 39–41 while actively inhibiting recombination of the Igk locus 33,42. Activated STAT5 

enters the nucleus and forms a complex with PRC2/EZH2 which binds to the intronic enhancer 
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of Igk (iEκ) and induces H3K27me3-mediated repression to inhibit recombination of this locus 

43,44. Strikingly, conditional deletion of STAT5 within pro-B cells results in increased Igk 

recombination at the pro-B cell stage 34.  

It is known that B-1a cells originate primarily from fetal tissues, however it remains 

unclear what pathways drive B-1a cell development and lead to the acquisition of their unique 

characteristics. In addition, it has been shown that B-1a cells are efficiently generated in IL-7-/- 

and IL-7R-/- mice albeit at reduced numbers compared to wild-type 37,38,45,46. Given our finding 

that fetal liver (FL) pro-B cells have less active cytoplasmic pSTAT5 than bone marrow (BM) 

pro-B cells 47, we asked whether this could influence V(D)J recombination and B cell 

development. Here we show that low levels of IL-7R/pSTAT5 signaling in the fetal liver 

environment promote an ‘alternate pathway’ of B cell development in which increased Igk 

rearrangement occurs at the pro-B cell stage of development. Productive rearrangement of Igh 

and Igk at this stage leads directly to cell surface expression of a mature BCR, bypassing the 

requirement for SLC and selecting autoreactive receptors that are characteristic of B-1a cells. 

Indeed, extending earlier work27 we demonstrate that while SLC-independent development 

leads to a significant reduction in B-2 cell numbers, B-1a cells with their characteristic VH12 anti-

phosphatidylcholine bias are still efficiently generated. Thus, reduced IL-7R/STAT5 signaling 

promotes an alternate pathway of development which favors the production of B-1a cells with 

self-reactive receptors characteristic of this B cell subset. Together these data connect opposing 

models of B-1a cell development and explain how these cells acquire their unique properties. 

 

RESULTS: 

Early Igk recombination is increased in fetal liver versus bone marrow pro-B cells as a 

result of reduced STAT5-mediated repression  

Fetal liver (FL) and bone marrow (BM) derived progenitor cells are differentially dependent on 

IL-7 for development and we have found that fetal liver derived pro-B cells have significantly 
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lower levels of the downstream signaling component, phospho-STAT5 compared to their bone 

marrow derived pro-B cell counterparts 47. Thus, we asked whether alterations in phospho-

STAT5 levels correlate with altered regulation of Igk recombination in these two anatomic 

locations.  To explore this, we analyzed recombination from ex vivo derived bone marrow (5-

6wk adults) and fetal liver (E17-18) pro-B cells using semi-quantitative PCR analysis (Fig. 1a). 

This assay uses a degenerate Vκ primer with a common reverse primer downstream of Jκ gene 

segments to measure recombination of a Vκ with each of the four Jκ segments48. As shown in 

Figure. 1a, FL pro-B cells have increased Igk recombination relative to BM pro-B cells.  

To address the question of altered Igk recombination between these two cell types in a 

more quantitative manner, we made use of a real-time PCR assay that quantities Jκ1 

rearrangement by assessing the retention of germline Igk 49. In this assay, a product cannot be 

generated after recombination because the sequence to which the upstream primer binds is lost 

or inverted during the recombination process. Quantitation of the amplified product is 

determined as a ratio between the single copy gene β-actin and the germline Igk band. Control 

tail DNA, in which no Igk rearrangement occurs, is set at 100%. Consistent with the semi-

quantitative experiments described above, fetal liver pro-B cells have lower levels of Igk 

germline retention (61%) relative to bone-marrow pro-B cells (87%) (Fig. 1b).  

 To determine the proportion of cells that are actively undergoing recombination at a 

single cell level, we used three-dimensional (3-D) immuno-flourescent in situ hybridization 

(FISH) assay that visualizes recombination by the association of γ-H2AX foci with the individual 

alleles of antigen receptor loci. γ-H2AX DNA repair foci have been shown to be associated with 

antigen receptor loci undergoing recombination 50,51. In these experiments, we used two Igk 

BAC DNA probes that hybridize to the distal Vκ24 (RP23-101G13) gene region and the Cκ 

region (RP24-387E13) in combination with an antibody against the phosphorylated form of γ-

H2AX (Fig. 1c). We found significantly increased association of γ-H2AX foci with the Igk locus in 
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fetal liver versus bone marrow derived pro-B cells (16.7% versus 3.0%). Consistent with our 

previous experiments the frequency of DNA breaks in FL pro-B cells (16.7%) is again at an 

intermediate level compared to BM pre-B cells (30%) where Igk recombination typically occurs 

(Fig. 1d). These numbers reflect the combined data from two independent experiments 

(Supplementary Table S1).  

Antigen receptor loci undergo large-scale contraction through chromatin looping which 

enables rearrangement between widely dispersed gene segments. Locus contraction is tightly 

linked both to recombination status and usage of distal gene segments 48,52. To address the 

contraction status of the Ig� locus we measured the distance separating the distal Vκ24 and Cκ 

probes in interphase cells.  Our analyses indicate that FL pro B cells are significantly more 

contracted than wild-type (WT) double positive (DP) T cells, a cell type in which 

Ig� rearrangement does not occur (Supplementary Fig. 1a,b). Indeed the level of contraction 

is comparable to that seen in wild-type bone marrow derived pre-B cells where light-chain 

rearrangement is known to occur.  

It is known that activated STAT5 forms a complex with PRC2 and binds to the intronic 

enhancer of Igk, iEκ to inhibit Igk recombination43,47,53. To determine if the increase in early Igk 

rearrangement could be caused by reduced STAT5-mediated repression, we assessed how 

much STAT5 is bound to Igk via STAT5-ChIP qPCR. As shown in Fig. 1e, we found that FL pro-

B cells have significantly less STAT5 bound to iEκ compared to BM pro-B cells and binding 

more closely resemble levels found in BM pre-B cells where Igk recombination normally occurs. 

Taken together, these findings indicate that in the FL versus BM environment Igk rearrangement 

occurs at higher levels in pro-B cells due to a decrease in STAT5-mediated repression.  

 

Pro-B cells that undergo early Igk rearrangement can bypass the pre-BCR checkpoint 

and make B cells that express a mature BCR.    
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Classical bone marrow B cell development starts with Igh recombination at the pre-pro to pro-B 

cell stages followed by Igk/Igl recombination at the small pre-B cell stage. However,  

JHT mice that lack JH segments as well as the Igh intronic enhancer, and are therefore unable 

to undergo Igh recombination, can rearrange Igk/Igl independent of Igh rearrangement 

(Supplementary Fig. 2)28,54,55 This is also true for SLC deficient mice and a fraction of B cells 

undergoing development in the bone marrow of wild-type mice 56. Given our finding that a 

significant number of pro-B cells rearrange Igk in the fetal liver environment, we reasoned that 

productive heavy and light-chain gene rearrangement in pro-B cells could lead to expression of 

a mature BCR, bypassing the requirement for a pre-BCR. To address this question as a proof of 

principle, we examined fetal liver B cells from mice that are deficient for a component of 

surrogate light chain, Lambda5 (Igll1-/-), in conjunction with a transgene that has a prearranged 

functional heavy-chain (B1.8). Whereas Igll1-/- mice display a strong developmental block at the 

pro-B cell stage and made very few IgM+ cells (0.44% of B cells). On the other hand, B1.8 and 

Igll1-/-; B1.8 mice produce similarly high proportions of IgM+ B cells (12 and 13 % respectively), 

which are also IgK+. Importantly, B1.8 mice have a substantial pre-B cell compartment which is 

not detected in Igll1-/-, B1.8 mice despite similar IgM+ B cell output (Fig. 2). This shows that 

having a productive heavy and light-chain can bypass the requirement for pairing with SLC to 

form immature B cells that express the mature BCR. Together this data shows that in the fetal 

liver, expression of Igh and Igk at the pro-B cell stage can bypass the developmental block 

induced by surrogate light chain deficiency by forming B cells with a mature BCR.        

 

B-1a cells are efficiently generated in surrogate light deficient mice.   

B-1a cells are primarily generated from fetal tissues, and we have shown that FL derived B cells 

frequently undergo early Igk recombination allowing cells to bypass the pre-BCR selection 

stage. Thus we next asked whether an absence of surrogate light chain could impact the 

generation of B-1a cells 12,57. Here we analyzed the B-2 as well as the B-1 compartment, which 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/214908doi: bioRxiv preprint first posted online Nov. 13, 2017; 

http://dx.doi.org/10.1101/214908
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10

consists of both B-1a and B-1b cells. B-1b cells are distinct from B-1a cells in that they lack CD5 

expression and have a memory function in protecting against bacterial infections 58. As 

expected, peritoneal B-2 cells were significantly decreased compared to controls. Furthermore 

although B-1b cells were also significantly decreased, the B-1a cell compartment remained 

intact. This was reflected in cell percentage as well as total cell numbers (Fig. 3a,b). These data 

indicate that while B2 and B1b cells development is strongly promoted by SLC, B-1a cells do 

not depend on a pre-BCR checkpoint. It should be noted that B1.8 transgenic mice could not be 

used to analyze the B-1a cell compartment in surrogate light chain deficient mice because the 

B1.8 pre-rearranged heavy-chain does not support B-1a cell development 59. 

 Two different subsets of B-1a cells that segregate different functions of the B-1a cell 

compartment, have been identified by plasma cell alloantigen 1 (PC1) 60,61. In order to determine 

whether or not both of these subsets of B-1a cells were represented in B-1a cells generated in 

surrogate light chain deficient mice, we looked at PC1 expression. B-1a cells from Igll1-/- mice 

were found to have similar proportions of PC1lo and PC1hi B-1a cells as in wild-type mice 

(Supplementary Fig. 3). This suggests that not only is the B-1a compartment size normal in 

surrogate light chain knockout mice, but PC1lo and PC1hi subsets are maintained.    

  

Constitutive phospho-STAT5 signaling selectively inhibits B-1a cell development. 

Our data suggest that low phospho-STAT5 signaling induces early Igk recombination in FL pro-

B cells, which promotes the efficient generation of B-1a cells in surrogate light chain deficient 

mice. To further validate the role of IL-7R/STAT5 signaling in B-1a cell development, we next 

asked whether increased STAT5 signaling could have the opposite effect on B-1a cell 

development and impair the generation of this compartment. To address this question we used 

mice expressing a constitutive active form of STAT5 (Stat5b-CA) 62.  

In these mice we found that although B-2 and B-1b cell development were not 

significantly affected, all three independent littermate controlled Stat5b-CA mice exhibited a 
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decrease in the B-1a cell compartment. This is reflected in cell proportions as well as total cell 

numbers (Fig. 4a,b). Thus, STAT5 signaling inhibits B-1a cell development underscoring the 

importance of reduced IL-7R/STAT5 signaling in driving the development of these cells.  

 

SLC independent B-1a cells express receptors with phosphatidylcholine (PtC) specific 

VH12 gene rearrangements  

B-1a cells are known to have a strong bias for immunoglobulin rearrangements that confer 

specificity to phosphatidylcholine (PtC) (VH12/Vk4). In addition, the pre-BCR is known to select 

against B-1a specific autoreactive heavy-chains as a result of a defect in pairing of the latter 

with surrogate light chain 25,26. Given these facts we next asked whether B-1a cells that develop 

independent of SLC could lead to the generation of B-1a specific rearrangements. To address 

this question we analyzed peritoneal cavity B cells for VH12 usage and specificity against PtC. 

As shown in Fig. 5a B-1a cells from Igll1-/- mice express VH12 rearranged receptors. 

Importantly, these VH12+ B-1a cells bind PtC containing liposomes inferring that they have the 

canonical VH12/Vk4 gene segment bias (Fig. 5a). Additionally, there is not a significant 

difference in the proportion of B-1a cells that have specificity against PtC (Fig. 5b). Thus, 

surrogate light chain independent B-1a cell development supports the generation of these B-1a 

cells. 

 

B-1a cells have a similar gene segment usage to wild-type controls.  

To determine how SLC deficiency affects other VH gene segment usage, we sequenced the 

BCR repertoires of B-1a cells from WT and SLC-deficient mice. Briefly, peritoneal cavity B-1a 

cells were sorted, lysed and the rearranged Igh products amplified by PCR. Illumina adapters 

and barcodes were added and the rearrangements sequenced by next-generation sequencing. 

BCR repertoires were analyzed by IMGT/High-VQUEST and visualized using 

IMGT/StatClonotype63–66. These analyses revealed that B-1a cells from Igll1-/- mice have a 
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similar overall VH usage compared to those of wild-type mice (Fig. 6). This shows that B-1a cells 

that develop in the absence of SLC have a wide distribution of gene segment usage rather than 

representing the progeny of a few rare progenitors. As expected VH12 (VH12-3) usage, was 

found to be high in wild-type B-1a cells and levels were matched in the cells from Igll1-/- mice 

(Fig. 6) 7. The rearrangement studies support the data from our FACs analysis and underscore 

the finding that B-1a cells generated in the absence of SLC maintain a VH12 gene segment bias.     

 

DISCUSSION:  

Although it was known that B-1a cells predominantly develop in the fetal liver, the pathways 

driving development and the mechanisms underlying the generation of B cells with a repertoire 

skewed towards autoreactivity was not previously known. Indeed, this has been a subject of 

debate for many years. Here we now reveal that a reduction in IL-7 signaling in the fetal liver 

environment alleviates Igk repression and promotes early rearrangement of this locus in pro-B 

cells. Productive heavy and light-chain gene rearrangement at the pro-B cell stage can lead 

directly to the expression of a mature BCR, thereby bypassing the requirement for a pre-BCR 

checkpoint. Since PtC specific VH gene rearrangements pair poorly with SLC 25 and the pre-BCR 

selects against autoreactive receptors 26, SLC independent development provides an 

explanation for how B cells with autoreactive, PtC specific receptors are generated. In more 

general terms and along Jerne’s idea that the immune system selects antibody mutants from an 

initial self-reactive repertoire 67, B cell progenitors can be initially positively selected by the 

expression of autoreactive BCRs or their evolutionary surrogate, the pre-BCR 31,32. This is 

followed by negative selection of autoreactivity through receptor editing. The skewing of the B-

1a receptor repertoire towards autoreactivity likely reflects the imprint of the initial positive 

selection of B-1a cells through autoreactive BCRs rather than SLC. 

The idea that B-1 cells can develop in a SLC independent manner is not novel. In fact, 

Kitamura et al. (1992) observed that in contrast to B-2 cells B-1 cells were essentially unaffected 
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by SLC deficiency, however the distinct effect on the B-1a versus B-1b cell compartment was 

not investigated27. Our analyses demonstrate that while B-2 and B-1b cell development is 

severely impaired in Igll1-/- mice, B-1a cells can be generated at wild-type levels. Furthermore, 

SLC independent B-1a development could occur through a mechanism that involves reduced 

IL-7/STAT5 signaling and early Igk rearrangement. We found that B-1a cell development is 

selectively impaired in Stat5b-CA mice and this provides additional support for the idea that SLC 

independent B-1a cell development is favored by a decrease in IL-7 signaling.  

Taken together our findings point to a model in which B-1a cells typically develop in a 

SLC-independent manner. Interestingly, earlier work analyzing expression patterns of genes 

relevant to rearrangement in the yolk sac (YS), para-aortic splanchnopleura (P-Sp) and spleen 

demonstrate that at E9-11, early lymphoid progenitor cells express Rag2 and VpreB but lack 

expression of Igll168. This delayed expression of the SLC component, lambda5 (Igll1), points to 

the possibility that there is an early window in which B cell development can occur in the 

absence of SLC. In fact, this stage coincides with the stage at which the earliest B-1 progenitor 

cells are detected (E9 in the YS and P-Sp)69,70. Thus, we speculate that the reason why the 

early progenitors are B-1 specific is because they develop in an SLC-independent manner. The 

observation that SLC deficient mice efficiently generate B-1a cells with autoreactive receptors 

supports this model26. In sum our assignment of a SLC independent pathway of B cell 

development to B-1a cells provides a new perspective on B-1a development, reconciling old 

lineage and selection models (Fig. 7)  

 

Materials and Methods 

Mice 

Igll1-/- mice (Jackson Laboratory 002401) were maintained on a C57BL/6 background and 

genotyped as previously described27. B1.8 mice71 were crossed onto a Igll1-/- background. 
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These mice were housed and cared for in accordance with IACUC guidelines and protocols 

approved by NYUMC (protocol #: IA15-01468) and U of Minnesota (protocol #: 1502-32347A).  

 

Flow cytometry and antibodies 

Bone marrow and fetal liver cell populations were isolated from C57Bl/6 mice via cell sorting 

and analyzed by flow cytometry. B and T cell antibodies include: anti-CD45R/B220 (RA3-6B2), 

anti-CD19 (1D3), anti-IgMb (AF6-78), anti-IgM (II/41), anti-CD117/c-Kit (2B8), anti-CD2 (RM2-5), 

anti-CD25/IL2RA (PC61), anti-CD90.2/Thy1.2 (53-2.1), anti-CD5 (53-7.3), anti-VH12 (5C5)72 

anti-TCRB (H57-597), anti-CD8a (53-6.7), anti-CD4 (RM4-5). These antibodies were obtained 

from either BD Pharmigen or eBioscience. Fluorescent DPOC/CHOL Liposomes were acquired 

from FormuMax. The gating strategy was as follows: bone marrow pro-B cells 

B220+/CD19+/IgM-/c-kit+/CD25-/IgM-, bone marrow pre-B cells B220+/CD19+/ IgM-/c-kit-/CD25+, 

fetal liver pro-B cells (E17.5) B220+/CD19+/IgM-/c-kit+/CD2- and thymic DP cells Thy1.2+/TCRB-

/CD19-/CD4+/CD8+. Fetal liver pro-B cells were sorted on CD2- instead of CD25- because CD25 

is not expressed in fetal B cells. CD2 expression is correlated with cytoplasmic μ heavy-chain 

and can be used to identify pre-B cells and efficiently sort pro-B cells from the fetal liver 73. From 

the peritoneal cavity B-2, B-1a and B-1b were identified as followed: B-2 cells B220hi/CD19+, B-

1a cells B220lo/CD19+/CD5+ and B-1b cells B220lo/CD19+/CD5-. To obtain fetal liver precursor 

cells, fetal livers from E15.5-17.5 were subject to lineage depletion using the following biotin 

labeled antibodies: anti-CD4 (RM4-5), anti-CD8a (53-6.7), anti-TCRγδ ���, anti-CD49b (DX5), 

anti-Ly6G/Ly6C (RB6-8C5), anti-CD11c (N418), anti-CD11b (M1/70), anti-F4/80 (BM8), anti-

Ter-119 (TER-119) followed by a negative selection using streptavidin magnetic rapidspheres 

(STEMCELL Technologies). The remaining cells were sorted as: Lin-/CD19-/IgM-/c-kit+/CD2-

/B220lo. Cells were sorted using a FACSAria I (BD). Data were also collected on an LSR II (BD) 

and analyzed using FlowJo software.    
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Semiquantitative Igk rearrangement and Jκ1 germline retention analysis 

DNA was prepared from sorted cells by proteinase K digestion at 55C for 4 hours, 85C for 10 

mins. VκJκ joints were amplified using a degenerate Vκ primer (5’-

GGCTGCAGSTTCAGTGGCAGTGGRTCWGGRAC-3’), and a Jκ5 primer (5’-

ATGCCACGTCAACTGATAATGAGCCCTCTCC-3’). Acidia gene was amplified as a loading 

control (AID F: 5’-GCCACCTTCGCAACAAGTCT-3’, AID R: 5’-CCGGGCACAGTCATAGCAC-

3’). Bands were run through a 1.5% agarose gel electrophoresis and imaged using a ChemiDoc 

XR+ (Bio-Rad). Germline retention analysis of Jκ1 was carried out by real-time quantitative PCR 

analysis as previously described49.  

 

Immuno-DNA FISH 

Combined detection of γ-H2AX and Ig� loci was carried out on cells adhered to poly-L lysine 

coated coverslips as previously described50. Cells were fixed with 2% paraformaldehyde / PBS 

for 10 minutes and permeabilized for 5 minutes with 0.4% Triton / PBS on ice. After 30 minutes 

blocking in 2.5% BSA, 10% normal goat serum and 0.1% Tween-20 / PBS, H3S10ph staining 

was carried out using an antibody against phosphorylated serine-10 of H3 (Millipore) diluted at 

1:400 in blocking solution for one hour at room temperature. Cells were rinsed 3 times in 0.2% 

BSA, 0.1% Tween-20 / PBS and incubated for one hour with goat-anti-rabbit IgG Alexa 488 or 

594 or 633 (Invitrogen). After 3 rinses in 0.1% Tween-20 / PBS, cells were post fixed in 3% 

paraformaldehyde / PBS for 10 minutes, permeabilised in 0.7% Triton-X-100 in 0.1M HCl for 15 

minutes on ice and incubated in 0.1 mg/ml RNase A for 30 minutes at 37°C. Cells were then 

denatured with 1.9 M HCl for 30 minutes at room temperature and rinsed with cold PBS. DNA 

probes were denatured for 5 minutes at 95°C, pre-annealed for 45 minutes at 37°C and applied 

to coverslips which were sealed onto slides with rubber cement and incubated overnight at 
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37°C. Cells were then rinsed 3 times 30 minutes with 2x SSC at 37°C, 2x SSC and 1x SSC at 

room temperature. Cells were mounted in ProLong Gold (Invitrogen) containing DAPI to 

counterstain total DNA.The Ig� locus was detected using BAC DNA probes that hybridize to the 

distal Vκ24 gene region (RP23-101G13) and the Cκ region (RP24-387E13), in combination with 

an antibody against the phosphorylated form of γ-H2AX. BAC probes were directly labeled by 

nick translation with dUTP-A594 or dUTP-A488 (Invitrogen). FISH for locus contraction was 

conducted as previously published50.  

 

Confocal microscopy and analysis 

Cells were analyzed by confocal microscopy on a Leica SP5 Acousto-Optical Beam Splitter 

system. Optical sections separated by 0.3 μm were collected. Analysis on cells included those 

in which signals from both alleles could be detected which encompassed 90-95% of the total 

cells imaged. Further analysis was carried out using ImageJ. Alleles were defined as 

colocalized with γ-H2AX if the signals overlapped. Sample sizes typchically included a minimum 

of 100 cells and experiments were repeated at least two or three times. Statistical significance 

was calculated by χ2 analysis in a pair-wise manner. For locus contraction, distances were 

measured between the center of mass of each BAC signal. Significant differences in 

distributions of empirical inter-allelic distances were determined by a nonparametric two-sample 

Kolmogorov-Smirnov (KS) test. To eliminate observer bias, each experiment was analyzed by at 

least two people.  

 

STAT5 ChIP-qPCR 

STAT5 ChIP-qPCR was conducted as previously described43. Purified DNA was then analyzed 

by quantitative real-time PCR. Samples were analyzed in triplicate and represent three 

biological replicates. 
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Igh repertoire DNA library preparation and sequencing analysis 

Cells were sorted and lysed in 0.5 mg/mL proteinase K at 55C for 4 hours, 85C 10 mins. Lysed 

cells were used as template for HotStarTaq (Qiagen) PCR amplification. Primers used to 

amplify rearrangements were adapted from VH FR3 and JH BIOMED-2 primers74,75. Additional 

primers designed to capture some V genes missing from the BIOMED-2 study, which include 

VH12 genes (Supplementary Table S2). Amplified rearrangements were purified by gel 

extraction (Qiagen) followed by a standard end-repair reaction. Following purification steps were 

carried out by Ampure XP bead purification (Beckman Coulter). In order to attach Illumina-

compatible adapters, samples were treated by standard dA tailing followed by adapter ligation 

using Quick Ligase (NEB) mixed with preannealed NEXTflex DNA Barcodes (Bioo Scientific). 

QC was carried out by tapestation and quantified by qPCR (Kapa Biosystems). Samples were 

pooled and sequenced on an Illumina HiSeq 4000 (2 x 150 PE reads). Nucleotide sequences 

were compared to the reference equences from IMGT, the international ImMunoGeneTics 

information system (http://www.imgt.org) and analyzed using IMGT/HighV-QUEST66, a web 

portal allowing the analysis of thousands of sequences on IMGT/V-QUEST64. 

IMGT/StatClonotype was used to Analyze statistically significant gene segment usage between 

samples63,65. 
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FIGURE LEGENDS:  

Figure 1  Early Igk recombination is increased in fetal liver versus bone marrow pro-B cells as a 

result of reduced STAT5-mediated repression. (a) Semi-quantitative PCR performed on ex vivo 

derived BM (6 weeks) and FL pro-B (E17.5) to assess rearrangement of Vκ to each functional 

Jκ. Each lane represents 3-fold serial dilutions of input DNA. DNA levels were normalized to 

Aicda levels, which is located on the same chromosome as Igk. Cartoon outlining the location of 

the primers on the Igk locus (b) Recombination with Jκ1 was quantified by qPCR using primers 

specific for the unrearranged germline sequence. DNA is quantified as a ratio between the 

single copy β-actin gene and the Igκ germline product and shown as a proportion of tail DNA. 

Cartoon outlining the location of the primers on the Igk locus. Data is displayed as an average of 

two independent experiments and error bars represent the standard deviation. P-values were 

calculated using two-tailed T-tests (c) 3-D immuno-DNA FISH was performed on ex vivo sorted 

B cells using BAC probes specific to the distal Vκ24 (RP23-101G13) gene region and the Cκ 

region (RP24-387E13), shown in red and green respectively, in conjunction with an antibody to 

the phosphorylated form of γ-H2AX in white. Representative images of a B cell with no γ-H2AX 

associated with Igk alleles (top) and with γ-H2AX associated with one Igk allele (bottom). Scale 

= 1μm. (d) Percentage of B cells (BM pro-B, BM pre-B and FL pro-B) with at least one Igk allele 

associated with a γ-H2AX focus. P-values were calculated using two-tailed Fisher's exact tests. 

(e) STAT5-ChIP qPCR of iEκ on ex vivo sorted cells. Data is displayed as an average of 3 

biological replicates as a proportion of input DNA and error bars represent the standard 
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deviation. P-values were calculated using two-tailed T-tests. For all P-values, *significant (0.05-

0.01) **very significant (0.01-0.001), ***highly significant (<0.001).    

 

Figure 2  Pro-B cells that undergo early Igk rearrangement can bypass the pre-BCR checkpoint 

and make B cells that express a mature BCR. (a) Representative flow cytometry plots of fetal 

liver E17.5 cells from Igll1-/- and Igll1-/-; B1.8 littermates. Pro-B and pre-B cell gates are 

displayed as a percentage of CD19+, IgM- cells (left), IgM+ are displayed as a percentage of 

CD19+ cells (middle), and IgK+ histograms are displayed as a percentage of CD19+, IgM+ cells. 

(b) Graphical representation of IgM+ cells as a percent of CD19+ B cells. Data are displayed as 

the average of 3 independent experiments and error bars show the standard deviation. P-values 

were calculated using a two-tailed T-test, *significant (0.05-0.01) **very significant (0.01-0.001), 

***highly significant (<0.001).    

 

Figure 3  Pro-B cells that undergo early Igk rearrangement can bypass the pre-BCR checkpoint 

and make B cells that express a mature BCR. (a) Representative flow cytometry plots of 

peritoneal cavity cells from wild-type and Igll1-/- mice. B-2 and B-1 cell gates are displayed as a 

percentage of CD19+ cells (left). B-1a and B-1b cell gates are displayed as a percentage of B-1 

cells (right). (b) Total cell numbers of B-2, B-1b and B-1a cells were calculated from the 

peritoneal cavity of these mice. Data is displayed in box plots and each dot represents an 

individual mouse. P-values were calculated using two-tailed T-tests, *significant (0.05-0.01) 

**very significant (0.01-0.001), ***highly significant (<0.001).    

 

Figure 4  Constitutive phospho-STAT5 signaling selectively inhibits B-1a cell development. (a) 

Representative flow cytometry plots of peritoneal cavity cells from wild-type and STAT5b-CA 

mice. B-2 and B-1 cell gates are displayed as a percentage of CD19+ cells (left). B-1a and B-1b 

cell gates are displayed as a percentage of the B-1 cells (right). (b) Total cell numbers of B-2, B-
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1b, and B-1a cells were calculated from the peritoneal cavity of these mice. Each dot represents 

an individual mouse and lines connect pairs of littermates. P-values were calculated by paired 

two-tailed T-tests, *significant (0.05-0.01) **very significant (0.01-0.001), ***highly significant 

(<0.001).    

 

Figure 5  SLC independent B-1a cells express receptors with phosphatidylcholine (PtC) specific 

VH12 gene rearrangements. Peritoneal cavity B-1a cells from wild-type and Igll1-/- mice are 

shown that highlight the proportion of B-1a cells that are either: (a) VH12+, PtC+ or (b) PtC+. The 

left side shows representative flow cytometry plots. The right side is a graphical summary of the 

mice from all of the experiments. Each dot represents an individual mouse and lines connect 

pairs of littermates. P-values were calculated by paired two-tailed T-tests, *significant (0.05-

0.01) **very significant (0.01-0.001), ***highly significant (<0.001). 

 

Figure 6  Igll1-/- B-1a cells have a similar gene segment usage to wild-type controls.  

Representative synthesis graphs generated by IMGT/StatClonotype that compare differences in 

V gene segment usage between wild-type (Red) and Igll1-/- (Blue) derived B-1a cells. The red 

box highlights VH12 (VH12-3) gene segment. This graph combines a bar graph for the 

normalized proportions of each gene segment and the differences in proportions with 

significance and confidence intervals (CI).  

 

Figure 7  Model of classical bone marrow B cell development versus alternate fetal liver B cell 

development. In the classical bone marrow B cell developmental pathway, high levels of STAT5 

signaling largely prevent Igk recombination at the pro-B cell stage. At the large pre-B cell stage, 

a productive heavy-chain pairs with SLC and pre-BCR signaling at this stage leads to 

proliferative expansion and positive selection. Autoreactive heavy-chains pair poorly with SLC 

and will not experience positive selection in this manner. Following Igk recombination at the 
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small pre-B cell stage, self-reactive B cells can undergo receptor editing to further select against 

self-reactive BCRs. In the alternate fetal liver B cell developmental pathway generating B-1a 

cells, low levels of STAT5 signaling allow for Igk recombination at the pro-B cell stage, allowing 

the generation of B cells expressing a mature BCR instead of a pre-BCR. Here, self-reactive B 

cells are initially positively selected by self-antigens. Although these B cells can potentially 

undergo receptor editing to modify their BCRs, the initial positive selection of autoreactive B 

cells skews the B-1a BCR repertoire towards autoreactivity.  

 
 
Supplementary Figure 1  Fetal liver pro-B cells and bone marrow pre-B cells are similarly 

contracted at the Igk locus.(a) Representative confocal microscopy images showing the 

distance separation between the probes on Igk in fetal liver pro-B cells, bone marrow pre-B cells 

and double positive T cells. (b) Distances separating the two ends of the locus are displayed as 

a cumulative frequency curve.  A left shift on the curve is indicative of closer association. Bone 

marrow pre-B cells (blue), fetal liver pro-B cells (green), and negative control double positive T 

cells (black). P-values were generated using two-sample Kolmogorov-Smirnov tests.  

 

Supplementary Figure 2  Igk recombination can occur independent of Igh recombination. 

Semi-quantitative PCR performed on ex vivo derived fetal liver pro-B cells (E17.5) from wild-

type and JHT mice. Each lane represents 3-fold serial dilutions of input DNA. DNA levels were 

normalized to iEκ, which is also located on the same chromosome as Igk.  

 

Supplementary Figure 3  Igll1-/- mice maintain both functionally distinct PC1lo and PC1hi 

subsets of B-1a cells. Representative flow cytometry plots of peritoneal cavity cells from wild-

type and Igll1-/- mice. B-2 and B-1 cell gates are displayed as a percentage of CD19+ cells (left). 

B-1a and B-1b cell gates are displayed as a percentage of the B-1 cells (middle). PC1lo and 
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PC1 high B-1a cells are displayed as a percentage of B-1a cells (right). A PC1 FMO 

(fluorescence minus one) was used to help designate the gating.  
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