97 research outputs found

    Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    Get PDF
    The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC) and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS). Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand

    The Role of Internal Water in GPCR Complexes

    Get PDF

    Flores de Corte: Resultados de una investigación de mercado

    Get PDF
    Este trabajo forma parte de la investigación de mercado de flores de corte para la provincia de Tucumán que realiza un equipo de profesionales del INTA y la UNT con el objetivo de brindar información a los productores de flores de corte de la zona. Se decidió generar los datos a través de encuestas, observaciones y entrevistas a referentes del tema. En este trabajo se presenta una encuesta a florerías y una encuesta telefónica, ambas realizadas en el año 2009 para medir características del consumo de flores. La encuesta a florerías fue estructurada en cuatro partes: características generales de las florerías, productos vendidos, proveedores y preferencias de los consumidores. La encuesta telefónica contó con un cuestionario corto con preguntas sobre la habitualidad del consumo, motivos de compra, atributos valorados y variables de segmentación del mercado. Con las respuestas se efectuaron tratamientos estadísticos descriptivos a las variables. Algunos resultados obtenidos son referidos a: origen de los ingresos de los floristas explicado por diferentes especies vendidas según tipo de florería, existencia de variabilidad de precios para la misma especie de flor relevada en distintos negocios, percepciones a cerca de los proveedores, fechas clave, incidencia de compra medida a través de la encuesta telefónica, y ocasión de compra.The following work belongs to a market research about cut flowers for the province of Tucumán. It has been done by a staff of professionals from INTA and UNT whose objective is to provide market information for cut flowers producers from the region. The data have been generated throughout surveys, observations and interviews done to specialists about this issue. This work introduces two surveys conducted in 2009: one done to flower shops and the other (a telephone one) conducted to the measurement of cut flowers consumption. The flower shops’ survey was structured in four sections: flower shops’ general characteristics, sold products, suppliers and consumers prefferences. As to the telephone survey, it consisted in a short questionnaire about regularities over consumption, purchase motives, qualities observed and segmentation market variables. Databases were subsequently elaborated with the collected information and afterwards several statistical studies on a descriptive basis were held. Some results obtained reffered to: flower shops’ sources of income explained by species sold according to the kind of flower shop; the existence of prices variability for the same kind of flowers among different flower shops; suppliers’ perceptions; special dates; the incidence of buyings measured throughout telephone surveys; and the ocassion of the purchases.Fil: Delgado Cordomi, Mariana. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas; ArgentinaFil: Perez, Gonzalo Antonio. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas; ArgentinaFil: Talassino, Mauricio Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas; Argentin

    Human blue cone opsin regeneration involves secondary retinal binding with analog specificity

    Get PDF
    Human color vision is mediated by the red, green, and blue cone visual pigments. Cone opsins are G-protein-coupled receptors consisting of an opsin apoprotein covalently linked to the 11-cis-retinal chromophore. All visual pigments share a common evolutionary origin, and red and green cone opsins exhibit a higher homology, whereas blue cone opsin shows more resemblance to the dim light receptor rhodopsin. Here we show that chromophore regeneration in photoactivated blue cone opsin exhibits intermediate transient conformations and a secondary retinoid binding event with slower binding kinetics. We also detected a fine-tuning of the conformational change in the photoactivated blue cone opsin binding site that alters the retinal isomer binding specificity. Furthermore, the molecular models of active and inactive blue cone opsins show specific molecular interactions in the retinal binding site that are not present in other opsins. These findings highlight the differential conformational versatility of human cone opsin pigments in the chromophore regeneration process, particularly compared to rhodopsin, and point to relevant functional, unexpected roles other than spectral tuning for the cone visual pigmentsPeer ReviewedPostprint (author's final draft

    Quaternary structure of a G-protein coupled receptor heterotetramer in complex with Gi and Gs

    Get PDF
    Background: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. Results: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. Conclusions: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function

    Membrane-Protein Interactions in a Generic Coarse-Grained Model for Lipid Bilayers

    Get PDF
    We study membrane-protein interactions and membrane-mediated protein-protein interactions by Monte Carlo simulations of a generic coarse-grained model for lipid bilayers with cylindrical hydrophobic inclusions. The strength of the hydrophobic force and the hydrophobic thickness of the proteins are systematically varied. The results are compared with analytical predictions of two popular analytical theories: The Landau-de Gennes theory and the elastic theory. The elastic theory provides an excellent description of the fluctuation spectra of pure membranes and successfully reproduces the deformation profiles of membranes around single proteins. However, its prediction for the potential of mean force between proteins is not compatible with the simulation data for large distances. The simulations show that the lipid-mediated interactions are governed by five competing factors: Direct interactions, lipid-induced depletion interactions, lipid bridging, lipid packing, and a smooth long-range contribution. The mechanisms leading to "hydrophobic mismatch" interactions are critically analyzed.Comment: 16 pages, 8 figures, accepted for publication in Biophysical Journa

    Toy amphiphiles on the computer: What can we learn from generic models?

    Full text link
    Generic coarse-grained models are designed such that they are (i) simple and (ii) computationally efficient. They do not aim at representing particular materials, but classes of materials, hence they can offer insight into universal properties of these classes. Here we review generic models for amphiphilic molecules and discuss applications in studies of self-assembling nanostructures and the local structure of bilayer membranes, i.e. their phases and their interactions with nanosized inclusions. Special attention is given to the comparison of simulations with elastic continuum models, which are, in some sense, generic models on a higher coarse-graining level. In many cases, it is possible to bridge quantitatively between generic particle models and continuum models, hence multiscale modeling works on principle. On the other side, generic simulations can help to interpret experiments by providing information that is not accessible otherwise.Comment: Invited feature article, to appear in Macromolecular Rapid Communication

    Adenosine/A2B receptor signaling ameliorates the effects of ageing and counteracts obesity

    Full text link
    The combination of aging populations with the obesity pandemic results in an alarming rise in non-communicable diseases. Here, we show that the enigmatic adenosine A2B receptor (A2B) is abundantly expressed in skeletal muscle (SKM) as well as brown adipose tissue (BAT) and might be targeted to counteract age-related muscle atrophy (sarcopenia) as well as obesity. Mice with SKM-specific deletion of A2B exhibited sarcopenia, diminished muscle strength, and reduced energy expenditure (EE), whereas pharmacological A2B activation counteracted these processes. Adipose tissue-specific ablation of A2B exacerbated age-related processes and reduced BAT EE, whereas A2B stimulation ameliorated obesity. In humans, A2B expression correlated with EE in SKM, BAT activity, and abundance of thermogenic adipocytes in white fat. Moreover, A2B agonist treatment increased EE from human adipocytes, myocytes, and muscle explants. Mechanistically, A2B forms heterodimers required for adenosine signaling. Overall, adenosine/A2B signaling links muscle and BAT and has both anti-aging and anti-obesity potential
    corecore