2,519 research outputs found

    Structural Investigation of MscL Gating Using Experimental Data and Coarse Grained MD Simulations

    Get PDF
    The mechanosensitive channel of large conductance (MscL) has become a model system in which to understand mechanosensation, a process involved in osmoregulation and many other physiological functions. While a high resolution closed state structure is available, details of the open structure and the gating mechanism remain unknown. In this study we combine coarse grained simulations with restraints from EPR and FRET experiments to study the structural changes involved in gating with much greater level of conformational sampling than has previously been possible. We generated a set of plausible open pore structures that agree well with existing open pore structures and gating models. Most interestingly, we found that membrane thinning induces a kink in the upper part of TM1 that causes an outward motion of the periplasmic loop away from the pore centre. This previously unobserved structural change might present a new mechanism of tension sensing and might be related to a functional role in osmoregulation.The study was supported by a grant from the Australian Research Council. The simulations were carried out using computer time from iVEC and a Merit Allocation Scheme on the NCI National Facility at the Australian National University. ED was supported by a Jean Rogerson Postgraduate scholarship and the Beryl Henderson Memorial Grant by the Australian Federation of University Women ACT. Websites of funding agencies: http://nci.org.au/access/merit-allocationscheme/, http://www.ivec.org/ http://www.arc.gov.au/ncgp/default.htm, http://spe.publishing.uwa.edu.au/latest/scholarships/postgraduate/rogerson, http://www. afgw.org.au/what-we-do/scholarships-2/ The authors hereby confirm that the funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Impact of Cholesterol on Voids in Phospholipid Membranes

    Full text link
    Free volume pockets or voids are important to many biological processes in cell membranes. Free volume fluctuations are a prerequisite for diffusion of lipids and other macromolecules in lipid bilayers. Permeation of small solutes across a membrane, as well as diffusion of solutes in the membrane interior are further examples of phenomena where voids and their properties play a central role. Cholesterol has been suggested to change the structure and function of membranes by altering their free volume properties. We study the effect of cholesterol on the properties of voids in dipalmitoylphosphatidylcholine (DPPC) bilayers by means of atomistic molecular dynamics simulations. We find that an increasing cholesterol concentration reduces the total amount of free volume in a bilayer. The effect of cholesterol on individual voids is most prominent in the region where the steroid ring structures of cholesterol molecules are located. Here a growing cholesterol content reduces the number of voids, completely removing voids of the size of a cholesterol molecule. The voids also become more elongated. The broad orientational distribution of voids observed in pure DPPC is, with a 30% molar concentration of cholesterol, replaced by a distribution where orientation along the bilayer normal is favored. Our results suggest that instead of being uniformly distributed to the whole bilayer, these effects are localized to the close vicinity of cholesterol molecules

    Lipid-mediated interactions tune the association of glycophorin A helix and its disruptive mutants in membranes

    Get PDF
    The specific and non-specific driving forces of helix association within membranes are still poorly understood. Here, we use coarse-grain molecular dynamics simulations to study the association behavior of glycophorin A and two disruptive mutants, T87F and a triple mutant of the GxxxG motif (G79LG83LG86L), embedded in a lipid membrane. Self-assembly simulations and the association free-energy profile confirm an energetically-favorable dimerized state for both the wild type and the mutants. The reduced association of the mutants compared to the wild type, as observed in experiments, can be justified from comparisons of the free energy profiles. Less-favorable protein-protein interactions as well as disruption of lipid packing around the mutant dimers is responsible for their reduced association. The role of the non-specific "lipid-phobic'' contribution appears to be as important as the specific "helix-helix'' contribution. However, the differences between the wild type and mutants are subtle and our simulations predict a dimerization state not only for the wild-type glycophorin A, but also for these 'disruptive' mutants. Our results highlight the importance of both specific as well as non-specific driving forces in the association of transmembrane helices, and point to the need of more careful interpretation of experimental measurements

    Molecular-dynamics of water transport through membranes - water from solvent to solute

    Get PDF
    An application of Molecular Dynamics computer simulation (MD) to the process of transport of water through a lipid bilayer membrane is described. The permeation process is far too slow to be modeled by straightforward MD. In stead the inverse of the permeability coefficient is expressed as an integral over a local permeation resistance, which itself is inversely proportional both to the local density and the local diffusion constant. These quantities axe recovered from MD simulations. The local density relates to a free energy profile, which is constructed by a combination of density determination, of the mean force on constrained molecules, and particle insertion. Thus a slow process can be accurately predicted from relatively short MD simulations.</p

    Reactive Martini:Chemical Reactions in Coarse-Grained Molecular Dynamics Simulations

    Get PDF
    Chemical reactions are ubiquitous in both materials and the biophysical sciences. While coarse-grained (CG) molecular dynamics simulations are often needed to study the spatiotemporal scales present in these fields, chemical reactivity has not been explored thoroughly in CG models. In this work, a new approach to model chemical reactivity is presented for the widely used Martini CG Martini model. Employing tabulated potentials with a single extra particle for the angle dependence, the model provides a generic framework for capturing bonded topology changes using nonbonded interactions. As a first example application, the reactive model is used to study the macrocycle formation of benzene-1,3-dithiol molecules through the formation of disulfide bonds. We show that starting from monomers, macrocycles with sizes in agreement with experimental results are obtained using reactive Martini. Overall, our reactive Martini framework is general and can be easily extended to other systems. All of the required scripts and tutorials to explain its use are provided online.</p

    Martini 3 Coarse-Grained Model for Second-Generation Unidirectional Molecular Motors and Switches

    Get PDF
    [Image: see text] Artificial molecular motors (MMs) and switches (MSs), capable of undergoing unidirectional rotation or switching under the appropriate stimuli, are being utilized in multiple complex and chemically diverse environments. Although thorough theoretical work utilizing QM and QM/MM methods have mapped out many of the critical properties of MSs and MMs, as the experimental setups become more complex and ambitious, there is an ever increasing need to study the behavior and dynamics of these molecules as they interact with their environment. To this end, we have parametrized two coarse-grained (CG) models of commonly used MMs and a model for an oxindole-based MS, which can be used to study the ground state behavior of MMs and MSs in large simulations for significantly longer periods of time. We also propose methods to perturb these systems which can allow users to approximate how such systems would respond to MMs rotating or the MSs switching

    Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations

    Get PDF
    The molecular packing details of lipids in planar bilayers are well characterized. For curved bilayers, however, little data is available. In this paper we study the effect of temperature and membrane composition on the structural and dynamical properties of a liposomal membrane in the limit of high curvature (liposomal diameter of 15-20 nm), using coarse grained molecular dynamics simulations. Both pure dipalmitoyl phosphatidylcholine (DPPC) liposomes and binary mixtures of DPPC and either dipalmitoyl phosphatidylethanolamine (DPPE) or polyunsaturated dilinoleylphosphatidylcholine (DLiPC) lipids are modeled. We take special care in the equilibration of the liposomes requiring lipid flip-flopping, which can be facilitated by the temporary insertion of artificial pores. The equilibrated liposomes show some remarkable properties. Curvature induces membrane thinning and reduces the thermal expansivity of the membrane. In the inner monolayer the lipid head groups are very closely packed and dehydrated, and the lipids tails relatively disordered. The opposite packing effects are seen in the outer monolayer. In addition, we noticed an increased tendency of the lipid tails to backfold toward the interface in the outer monolayer. The distribution of lipids over the monolayers was found to be strongly temperature dependent. Higher temperatures favor more equally populated monolayers. Relaxation times of the lipid tails were found to increase with increasing curvature, with the lipid tails in the outer monolayer showing a significant slower dynamics compared to the lipid tails in the inner monolayer. In the binary systems there is a clear tendency toward partial transversal demixing of the two components, with especially DPPE enriched in the inner monolayer. This observation is in line with a static shape concept which dictates that inverted-cone shaped lipids such as DPPE and DLiPC would prefer the concave volume of the inner monolayer. However, our results for DLiPC show that another effect comes into play that is almost equally strong and provides a counter-acting driving force toward the outer, rather than the inner monolayer. This effect is the ability of the polyunsaturated tails of DLiPC to backfold, which is advantageous in the outer monolayer. We speculate that polyunsaturated lipids in biological membranes may play an important role in stabilizing both positive and negative regions of curvature.</p

    Super High-Throughput Screening of Enzyme Variants by Spectral Graph Convolutional Neural Networks

    Get PDF
    Finding new enzyme variants with the desired substrate scope requires screening through a large number of potential variants. In a typical in silico enzyme engineering workflow, it is possible to scan a few thousands of variants, and gather several candidates for further screening or experimental verification. In this work, we show that a Graph Convolutional Neural Network (GCN) can be trained to predict the binding energy of combinatorial libraries of enzyme complexes using only sequence information. The GCN model uses a stack of message-passing and graph pooling layers to extract information from the protein input graph and yield a prediction. The GCN model is agnostic to the identity of the ligand, which is kept constant within the mutant libraries. Using a miniscule subset of the total combinatorial space (20 4-20 8 mutants) as training data, the proposed GCN model achieves a high accuracy in predicting the binding energy of unseen variants. The network's accuracy was further improved by injecting feature embeddings obtained from a language module pretrained on 10 million protein sequences. Since no structural information is needed to evaluate new variants, the deep learning algorithm is capable of scoring an enzyme variant in under 1 ms, allowing the search of billions of candidates on a single GPU. </p
    corecore