1 research outputs found

    Predicting age from cortical structure across the lifespan

    Get PDF
    Despite inter-individual differences in cortical structure, cross-sectional and longitudinal studies have demonstrated a large degree of population-level consistency in age-related differences in brain morphology. The present study assessed how accurately an individual’s age could be predicted by estimates of cortical morphology, comparing a variety of structural measures, including thickness, gyrification, and fractal dimensionality. Structural measures were calculated across up to seven different parcellation approaches, ranging from 1 region to 1000 regions. The age-prediction framework was trained using morphological measures obtained from T1-weighted MRI volumes collected from multiple sites, yielding a training dataset of 1056 healthy adults, aged 18-97. Age predictions were calculated using a machine-learning approach that incorporated non-linear differences over the lifespan. In two independent, held-out test samples, age predictions had a median error of 6-7 years. Age predictions were best when using a combination of cortical metrics, both thickness and fractal dimensionality. Overall, the results reveal that age-related differences in brain structure are systematic enough to enable reliable age prediction based on metrics of cortical morphology
    corecore