136 research outputs found

    Minimally invasive optical biopsy for oximetry

    Full text link

    Human Colon Microbiota Transform Polycyclic Aromatic Hydrocarbons to Estrogenic Metabolites

    Get PDF
    Ingestion is an important exposure route for polycyclic aromatic hydrocarbons (PAHs) to enter the human body. Although the formation of hazardous PAH metabolites by human biotransformation enzymes is well documented, nothing is known about the PAH transformation potency of human intestinal microbiota. Using a gastrointestinal simulator, we show that human intestinal microbiota can also bioactivate PAHs, more in particular to estrogenic metabolites. PAH compounds are not estrogenic, and indeed, stomach and small intestine digestions of 62.5 nmol naphthalene, phenanthrene, pyrene, and benzo(a)pyrene showed no estrogenic effects in the human estrogen receptor bioassay. In contrast, colon digests of these PAH compounds displayed estrogenicity, equivalent to 0.31, 2.14, 2.70, and 1.48 nmol 17α-ethynylestradiol (EE2), respectively. Inactivating the colon microbiota eliminated these estrogenic effects. Liquid chromatography–mass spectrometry analysis confirmed the microbial PAH transformation by the detection of PAH metabolites 1-hydroxypyrene and 7-hydroxybenzo(a)pyrene in colon digests of pyrene and benzo(a)pyrene. Furthermore, we show that colon digests of a PAH-contaminated soil (simulated ingestion dose of 5 g/day) displayed estrogenic activity equivalent to 0.58 nmol EE2, whereas stomach or small intestine digests did not. Although the matrix in which PAHs are ingested may result in lower exposure concentrations in the gut, our results imply that the PAH bioactivation potency of colon microbiota is not eliminated by the presence of soil. Moreover, because PAH toxicity is also linked to estrogenicity of the compounds, the PAH bioactivation potency of colon microbiota suggests that current risk assessment may underestimate the risk from ingested PAHs

    Characterization of the rumen lipidome and microbiome of steers fed a diet supplemented with flax and echium oil

    Get PDF
    Developing novel strategies for improving the fatty acid composition of ruminant products relies upon increasing our understanding of rumen bacterial lipid metabolism. This study investigated whether flax or echium oil supplementation of steer diets could alter the rumen fatty acids and change the microbiome. Six Hereford × Friesian steers were offered grass silage/sugar beet pulp only (GS), or GS supplemented either with flax oil (GSF) or echium oil (GSE) at 3% kg(-1) silage dry matter in a 3 × 3 replicated Latin square design with 21-day periods with rumen samples taken on day 21 for the analyses of the fatty acids and microbiome. Flax oil supplementation of steer diets increased the intake of polyunsaturated fatty acids, but a substantial degree of rumen biohydrogenation was seen. Likewise, echium oil supplementation of steer diets resulted in increased intake of 18:4n-3, but this was substantially biohydrogenated within the rumen. Microbiome pyrosequences showed that 50% of the bacterial genera were core to all diets (found at least once under each dietary intervention), with 19.10%, 5.460% and 12.02% being unique to the rumen microbiota of steers fed GS, GSF and GSE respectively. Higher 16S rDNA sequence abundance of the genera Butyrivibrio, Howardella, Oribacterium, Pseudobutyrivibrio and Roseburia was seen post flax feeding. Higher 16S rDNA abundance of the genus Succinovibrio and Roseburia was seen post echium feeding. The role of these bacteria in biohydrogenation now requires further study

    Quantitative analysis of ruminal bacterial populations involved in lipid metabolism in dairy cows fed different vegetable oils

    Get PDF
    Vegetable oils are used to increase energy density of dairy cow diets, although they can provoke changes in rumen bacteria populations and have repercussions on the biohydrogenation process. The aim of this study was to evaluate the effect of two sources of dietary lipids: soybean oil (SO, an unsaturated source) and hydrogenated palm oil (HPO, a saturated source) on bacterial populations and the fatty acid profile of ruminal digesta. Three non-lactating Holstein cows fitted with ruminal cannulae were used in a 3x3 Latin square design with three periods consisting of 21 days. Dietary treatments consisted of a basal diet (Control, no fat supplement) and the basal diet supplemented with SO (2.7% of dry matter (DM)) or HPO (2.7% of DM). Ruminal digesta pH, NH3-N and volatile fatty acids were not affected by dietary treatments. Compared with control and HPO, total bacteria measured as copies of 16S ribosomal DNA/ml by quantitative PCR was decreased (P < 0.05) by SO. Fibrobacter succinogenes, Butyrivibrio proteoclasticus and Anaerovibrio lipolytica loads were not affected by dietary treatments. In contrast, compared with control, load of Prevotella bryantii was increased (P < 0.05) with HPO diet. Compared with control and SO, HPO decreased (P < 0.05) C18:2 cis n-6 in ruminal digesta. Contents of C15:0 iso, C18:11 trans-11 and C18:2 cis-9, trans-11 were increased (P < 0.05) in ruminal digesta by SO compared with control and HPO. In conclusion, supplementation of SO or HPO do not affect ruminal fermentation parameters, whereas HPO can increase load of ruminal P. bryantii. Also, results observed in our targeted bacteria may have depended on the saturation degree of dietary oils

    Effect of algae on rumen biohydrogenation of polyunsaturated fatty acids

    No full text
    The increased consumption of animal fat has been associated with a higher incidence of chronic diseases such as cardiovascular diseases, obesity and diabetes due to the specific fatty acid composition of animal products. Nutritional recommendation in terms of dietary fat emphasize on an increased consumption of polyunsaturated fatty acids (PUFA) and on a decrease in dietary saturated fatty acids (SFA). Ruminant milk has often been criticized for its high SFA content and low n-3 fatty acids content, resulting from the de novo synthesis of SFA in the mammary gland and the active rumen biohydrogenation of dietary PUFA. On the other hand, the rumen microbial community produces fatty acids that are relatively unique to ruminant products and that were suggested to possess health-promoting properties. Hence, to improve the fatty acid composition of milk and to increase the human consumption of CLA and n-3 fatty acids, research on the potential to steer the rumen fatty acid metabolism is necessary. The main objectives of this PhD research were 1) to assess the effect of algae supply on the rumen lipid metabolism as well as rumen fermentation in vitro, 2) to further validate dietary algae supply in vivo in terms of animal performances and milk fatty acid profiles and 3) to characterize microorganisms involved in the rumen biohydrogenation process. The results of this PhD thesis indicate that dietary algae supply might represent an effective means to modify the rumen biohydrogenation process and to optimize the milk fatty acid profile. Rumen ciliates seem not involved in the rumen lipid metabolism while a significant role in rumen biohydrogenation might be attributed to yet unknown and uncultured bacterial species within the genera Butyrivibrio and Pseudobutyrivibrio

    Oximetry: recent insights into retinal vasopathies and glaucoma

    No full text
    This review will highlight a new technology and recent insights into measuring retinal oxygen saturation in several ophthalmic diseases. A growing body of evidence suggests that disturbances in retinal blood flow and oxygenation are related to several retinopathies and glaucoma, which can severely impair vision. The retinal oximeter may allow researchers and physicians to gain deeper insights into retinal physiology and clarify the impact of ischemia on retinal health and function. There are two commercially available systems to measure retinal oxygen saturation: the Oxymap retinal oximeter (Reykjavik, Iceland) and the Imedos Systems UG (Jena, Germany). In this review we will focus on the results obtained with Oxymap. Direct and non-invasive measurement of retinal oxygen saturation have potentially useful diagnostic and therapeutic indications in various eye diseases such as diabetic retinopathy, age-related macular degeneration, central retinal vein and artery occlusion, anterior ischemic optic neuropathy and retinopathy of prematurity. Despite several limitations, oxygen saturation assessment in the retinal vessels is a significant advancement in the understanding of ocular diseases. Nevertheless, further studies are needed to validate the use of oximetry in retinal vasopathies and glaucoma.status: publishe
    • …
    corecore