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Abstract

Vegetable oils are used to increase energy density of dairy cow diets, although
they can provoke changes in rumen bacteria populations and have repercussion
on the biohydrogenation process. The aim of this study was to evaluate the effect
of two sources of dietary lipids; soybean oil (SO; an unsaturated source) and
hydrogenated palm oil (HPO; a saturated source) on bacterial populations and the
fatty acid (FA) profile of ruminal digesta. Three non-lactating Holstein cows fitted
with ruminal cannulae were used in a 3x3 Latin square design with 3 periods
consisting of 21 d. Dietary treatments consisted of a basal diet (Control; no fat
supplement), and the basal diet supplemented with SO (2.7 % of DM) or HPO (2.7
% of DM). Ruminal digesta pH, NHs3-N and VFA were not affected by dietary

treatments. Compared with control and HPO, total bacteria measured as copies of
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16S rDNA/mI by gPCR was decreased (P<0.05) by SO. Fibrobacter succinogenes,
Butyrivibrio proteoclasticus, and Anaerovibrio lipolytica loads were not affected by
dietary treatments. In contrast, compared with control, load of Prevotella bryantii
was increased (P<0.05) with HPO diet. Compared with control and SO, HPO
decreased (P<0.05) C18:2 cis n-6 in ruminal digesta. Contents of C15:0 iso,
C18:11 trans-11 and C18:2 cis-9, trans-11 were increased (P<0.05) in ruminal
digesta by SO compared with control and HPO. In conclusion, supplementation of
SO or HPO do not affect ruminal fermentation parameters whereas HPO can
increase load of ruminal Prevotella bryantii. Also, results observed in our targeted

bacteria may have depended on the saturation degree of dietary oils.

Keywords: Soybean oil, rumen fermentation, vegetable oil, palm oil

Implications

A better knowledge of the rumen microbiome may help us to understand, and
eventually modulate, the effect of nutrition on milk fat production and quality. This
work was conducted to evaluate the effect of two sources of dietary lipids; soybean
oil (SO; an unsaturated source) and hydrogenated palm oil (HPO; a saturated
source) on bacterial populations and the fatty acid profile of ruminal digesta.
Contents of C15:0 iso, C18:11 trans-11 and C18:2 cis-9, trans-11 were increased
by SO. Supplementation with SO or HPO (2.7 % DM) did not affect ruminal
fermentation parameters whereas HPO can increase loads of ruminal Prevotella

bryantii.
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Introduction

Dietary polyunsaturated fatty acids (PUFA) have toxic effects on ruminal
microorganisms, therefore, lipid supplementation often leads to changes in ruminal
microbial populations and shifts in ruminal fermentation parameters (Zhang et al.,
2008). Rumen microbes attempt to detoxify PUFA by biohydrogenation (Maia et
al., 2010). Biohydrogenation pathways require an initial hydrolysis of ingested
dietary glyceride by microbial lipases/esterases causing the release of FA (Prive et
al., 2015) at this stage; Anaerovibrio lipolytica is recognized as one of the major
species involved in lipid hydrolysis in ruminants (Prive et al., 2013). Wallace et al.
(2006) proposed that Butyrivibrio genus contained the main bacterial species
involved in the biohydrogenation process. However, Huws et al. (2011)
demonstrated that as yet uncultured bacteria belonging to the genera Prevotella
and Anaerovoax, and unclassified Ruminococcaceae and Clostridiales may play

more important roles in ruminal biohydrogenation.

It is known that cellulolytic bacteria (Fibrobacter succinogenes, Ruminococcus
flavefaciens, Ruminococcus albus, and Butyrivibrio fibrisolvens) are important in
the biohydrogenation process of dietary sources of PUFA (Potu et al., 2011). Also,
Butyrivibrio proteoclasticus has been reported to be the principal rumen bacteria
involved in biohydrogenation of C18:1 FA (Boeckaert et al., 2008). On the other
hand, Prevotella bryantii has been described as a ruminal bacterium that is
involved in oligosaccharolytic and xylanolytic activities (Tajima et al., 2001) and
also Prevotella spp. has been reported as resistant to inhibitory effects of dietary

PUFA (Huws et al., 2010).
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Supplementing dairy cow diets with soybean oil (SO) can increase milk bioactive
FA such as C18:1 trans-11 (Allred et al., 2006; Vargas-Bello-Perez et al., 2015a).
Also, SO has been shown to reduce cellulolytic bacteria, protozoa populations and
total concentration of volatile fatty acids (Yang et al., 2009). On the other hand,
hydrogenated vegetable oils have been used to increase the energy content of
dairy cow diets in housed (Kargar et al., 2012) and pasture systems (Schroeder et

al., 2002) without effect on milk composition (Vargas-Bello-Perez et al., 2015b).

To our knowledge, no study on the effect of dietary hydrogenated palm oil on
ruminal bacterial populations in dairy cows has been published. Also, animal trials
reporting use of oils and their effect on rumen microbiome have less risk of bias
compared with in vitro studies. Therefore, the aim of this study was to make a
quantitative analysis of bacterial populations involved in ruminal biohydrogenation
(Fibrobacter succinogenes, Butyrivibrio proteoclasticus and Anaerovibrio lipolytica)
and Prevotella bryantii (one of the most predominant ruminal bacteria) in dairy
cows fed different vegetable oils (soybean oil as an unsaturated source and
hydrogenated palm oil as a saturated source). The effect of fat supplements on the
FA profile of ruminal digesta was another objective. Our hypothesis was that
supplementation with saturated versus unsaturated oils would have different

effects on bacterial populations that were or were not involved in biohydrogenation.

Materials and methods

Animals and treatments
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Three non-lactating Holstein cows (684.7 + 84.7 kg BW) fitted with ruminal
cannulae # 3C (Bar Diamond, Inc., Boise, Idaho, USA) were used in a 3x3 Latin
square design with 3 periods consisting of 21 d. Cows were fed to satisfy the
requirements of a dry cow on the last trimester of gestation consuming 10 kg DM
daily (NRC, 2001). Dietary treatments (Table 1) were a basal diet (C) containing
56% forage and 44% concentrate ratio with no fat supplement, and fat-
supplemented diets containing soybean oil (SO; 170 g/d/cow = 2.7% DM) and
hydrogenated palm oil (HPO; 170 g/d/cow = 2.7% DM). The amounts of oils used
were similar to those reported to alter rumen FA in previous studies (Yang et al.,
2009, Vargas-Bello-Perez et al., 2015a). The most important FA in dietary oils
were: SO contained (g/100g) 25 of C18:1 cis-9 and 51 of C18:2 cis n-6, whereas
HPO contained 47 of C16:0 and 43 of C18:0. Oils were administrated separately
and mixed manually into the daily TMR for each cow. Animals were housed in
individual stalls (2.4 x 6 m) and had free access to fresh water. Animal care and
procedures were carried out according to the guidelines of the Animal Care and

Use Committee of the Pontificia Universidad Catélica de Chile.

Samples

On the last day of each 21-d period, samples of whole ruminal digesta were
collected from the anterior, dorsal and mid-ventral regions of the rumen at 0900 h
(2 h post feeding) and were squeezed through three layers of cheesecloth. Ten ml
of residual ruminal fluid was immediately used to determine pH by using a pH
meter (PP-201 GOnDO Electronic, Taipei, Taiwan), 10 ml were kept for NH3-N

analysis (Bal et al., 2000) and another 10 ml were preserved for volatile fatty acid
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(VFA) determination by adding 1 ml of 25% metaphosphoric acid. Samples were
frozen (-20°C) for later analysis. The VFA measurement were performed by gas
chromatograph (GC-2010) equipped with a 30-m wall-coated open tubular-fused
silica capillary column (Stabilwax-DA; 30 m x 0.32 mm i.d., 0.25 pum film thickness,
Restek, Bellefonte, PA). Oven temperature was programmed for 145°C for 2 min
and then increased from 145 to 220°C at 4°C/min. The injector and flame-
ionization detector were 250 and 300°C, respectively. Following pH determination,
the strained ruminal fluid was centrifuged for 10 min at 3,000 x g at room
temperature. The supernatant was discarded and the residue was stored at -20°C

until microbiology analysis.

DNA extraction

Samples from each cow and every period were weighed (240 = 12 ug) and
deposited in 1.5 ml Eppendorf tubes. Subsequently, 300 ul of phosphate-buffered
saline (PBS) solution were added and mixed to homogenize the sample. DNA was
obtained by incubating the sample for 30 min at 37 °C with lysozyme (1 pg/ul) and
then for 30 min at 37 °C with proteinase K (0.1 mg / mL). DNA extraction was
performed using the Power Soil DNA Isolation Kit (Mo-Bio Laboratories, Inc.),

according to manufacturer's recommendations.

gPCR conditions
Primers (forward and reverse) used to target bacterial species of interest are
described in Table 2. Primers for Anaerovibrio lipolytica (Tajima et al., 2001),

Fibrobacter succinogenes (Tajima et al., 2001), Butyrivibrio proteoclasticus (Huws
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et al., 2010), and Prevotella bryantii (Tajima et al., 2001) were those reported in
previous research. Once obtained, the primers were tested for specificity using the
probe match function at the Ribosomal Database Project (RDP;
https://rdp.cme.msu.edu/probematch/search.jsp) as described Huws et al. (2007).
The oligonucleotides from each target bacteria were synthetized for Integrated
DNA Technologies (IDT, Coralville, 1A). These primers were also analyzed for the

requirements necessary for real-time PCR.

Real-time PCR quantification (qPCR) of total ruminal bacteria and bacterial species
of interest was performed on a Rotor Gene 6000 (Corbett Life Science, Brisbane,
Australia). Quantification of total ruminal bacteria was accomplished by gPCR
amplifying the V3-V4 region of the 16S rRNA gene using the conserved bacterial
domain-specific primers 341f (5’-CCTACGGGAGGCAGCAG-3’) and 788r (5'-
GGACTACCAGGGTATCTAA-3’). PCR reactions were carried out in quadruplicate
and in 10 pl final volume containing 1 pl of extracted DNA (1: 1000 dilution), 25
pmol/uL of each primer, DNAse-free water and 2x LightCycler® 480 DNA Master
SYBR Green | (Roche Applied Science). PCR conditions started with an initial
denaturation at 95°C for 5 min, followed by 50 cycles of denaturation at 95°C for 10
s, annealing at 60°C for 10 s and extension at 72°C for 15 s. The reaction mixture
for quantification of specific bacteria consisted of 1 ul of DNA template, 20 pmol/uL
of each specific primers described in Table 2, DNAse-free water and 2x
LightCycler® 480 DNA Master SYBR Green | (Roche Applied Science). The PCR
program was similar to total bacterial quantification, except for annealing

temperature. Annealing for Anaerovibrio lipolytica and Butyrivibrio proteoclasticus

7
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was performed at 62°C, and Fibrobacter succinogenes and Prevotell
annealing was performed at 60°C. Specificity of gPCR reactions was confirmed by
analyzing the temperature characteristics of melting curves — increase of

temperature from 72 to 95°C, holding 1 s on the first step and 5 s on next steps.

The number of copies of the target bacterial 16S rDNA were determined by the
serially dilution of purified genomic DNA extracted from ruminal samples, with the
objective to construct specific calibration curves, and thus calculate the
concentration of total and target bacteria in samples. The bacterial concentrations
were calculated considering the rRNA operon copy number of each bacterial
genome described in Genbank as follow: Fibrobacter succinogenes, 3 copies
(Accession number CP001792.1); Prevotella bryantii, 4 copies (Accession number
NZ_AUKF00000000.1); Butyrivibrio proteoclasticus, 6 copies (Accession number
NZ_JHWLO00000000.1) and Anaerovibrio lipolytica, 1 copy (Accession number
NZ_JHYAO00000000.1). The gPCR efficiencies for bacterial species of interest were
obtained using standard dilution curves in quadruplicate of Anaerovibrio lipolytica,
Fibrobacter succinogenes, Butyrivibrio proteoclasticus and Prevotella bryantii 16S
rDNA, respectively. The gPCR efficiencies were calculated according to the
equation: E = [(10(1 / slope))-1]. Standard curves were generated using relative
concentration vs. the threshold cycle (Ct). The gPCR efficiencies (E) were
calculated from the given slopes (M) in a RotorGene 6000 software. Based on the
slopes of the standard curves, the gPCR efficiencies ranged from 80% to 97%. The

transcripts studied showed high linearity: R > 0.99.
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Additionally, to check the expected sizes of each PCR product, the amplicons were
visualized by electrophoresis on a 1% (w/v) agarose gel was stained using
ethidium bromide and Lambda DNA/ Hindlll marker was used to compare the 16S

rDNA amplification fragments.

Sequence analysis

To verify the correct amplification in the gPCR assays of specific bacteria, the PCR
products were sequenced using the Macrogen USA sequencing service. The 16S
rDNA sequences were compared to the available databases using the basic Local
Alignment Search Tool (http://blast.ncbi.nim.nih.gov/Blast.cgi) and aligned with
reference sequences using Sequence Match function at the Ribosomal Database
Project (https://rdp.cme.msu.edu/seqgmatch/segmatch_intro.jsp) to determine the

approximate phylogenetic affiliations.

Fatty acid analysis

Lipids from oils, diets and ruminal digesta were extracted with chloroform/methanol
(2:1, v/v) by the method of Bligh and Dyer (1959) and trans-esterified with sodium
methoxide according to the method of Christie (1982) using a methylation reagent
(2.75 mL methanol:0.4 mL of 5.4 mol/L sodium methylate) and a termination
reagent (1 g oxalic acid/30 mL diethyl ether) according to Chouinard et al. (1999).
All chemicals and solvents used for this method were of analytical grade. A GC
system (GC-2010, Shimadzu Scientific Instruments) equipped with a 100-m
column (Rt-2560 column 100 m x 0.32 mm x 0.20 um column, Restek, Bellefonte,

PA) was used. The GC conditions were as follows: the oven temperature was

9
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initially set at 110°C for 4 min after injection, and then increased to 240°C
(20°C/min) with equilibration time of 2 min. The inlet and flame-ionization detector
temperatures were 260°C, the split ratio was 15:1 and a 2 pl injection volume was
used. The hydrogen carrier gas flow to the detector was 40 mL/min, airflow was
400 mL/min, and the flow of nitrogen makeup gas was 25 mL/min. Fatty acid peaks
were identified by using a fatty acid methyl ester standard (FAME; Supelco 37

Component FAME mix, Bellefonte, PA, USA).

Statistical analysis

Bacterial qPCR data were logio-transformed to attain normality. Data were
analyzed as a 3x3 Latin square design using the GenStat (12th Edition) statistical
package (VSN International Ltd, Oxford, UK). Fixed effects were experimental
periods and treatments and the random effect was the cow. When significant
treatment effects were detected, means were separated using Tukey test.
Probability of P < 0.05 was used to determine significant differences among

means.
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Results

Ruminal fermentation parameters and ruminal bacteria quantification

Cows consumed all their individual allocation of TMR (10 kg DM per cow per day)
with no feed refusals. Rumen digesta pH, NHs-N and total VFA were similar for the
three dietary treatments and averaged 6.9, 13.3 mg/dL and 57.5 mmoliL,
respectively. Molar proportions (mol/100 mol) of individual VFA were comparable
across dietary treatments and averaged 63.8 for acetate, 22.7 for propionate, 11.2

for butyrate and 2.4 for valerate (Table 3).

In this study, ruminal bacterial populations involved in lipid metabolism were
quantified by gPCR (Table 2). The obtained PCR products were checked by
expected size and sequenced. All the PCR products corresponded to the expected
size: Fibrobacter succinogenes (500 bp), Butyrivibrio proteoclasticus (200 bp),
Prevotella bryantii (550 bp) and Anaerovibrio lipolytica (600 bp) (not shown) and
the sequences corresponded to the target organism. Compared with control, total
bacteria (copies of 16S rDNA / ml) was decreased (P < 0.05) by SO and increased
(P < 0.05) by HPO. The load of target bacteria (bacteria / ml) was similar for all
dietary treatments and averaged: 4.52 for Fibrobacter succinogenes, 2.92 for
Butyrivibrio proteoclasticus and 4.19 for Anaerovibrio lipolytica (Table 4). However,

the load of Prevotella bryantii was increased (P < 0.05) by HPO but not by SO.

Fatty acid composition of ruminal digesta
Data from the FA composition of ruminal digesta is shown in Table 5. The most

abundant FA in ruminal digesta regardless of dietary treatment were (g/1009):
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C14:0 (4.4), C15:0 (5.7), C16:0 (36.5), C18:0 (21.7), C18:1 cis-9 (5.4) and C18:3
cis-9, 12, 15 (4.3). Compared with control and SO, HPO decreased (P < 0.05)
C18:2 cis n-6 (1.28 and 1.64 vs. 0.75 @/100g) and total contents of
monounsaturated (15.61 and 17.9 vs.7.66 g/100g) and unsaturated (22.54 and
25.79 vs. 11.22 g/100g) FA in ruminal digesta. Also, compared with control and
HPO, SO increased (P < 0.05) contents (g/100g) of C15:0 iso (1.92 and 1.04 vs.
2.76), C18:1 trans-11 (0.96 and 0.23 vs. 1.68) and C18:2 cis-9, trans-11 (1.42 and
0.42 vs. 1.65). Dietary treatments did not affect contents (g/100g) of the following
FA: C10:0, C11:0, C12:0, C13:0, C14:0, C14:1, C15:0, C15:1 cis-10, C16:0, C16:0
iso, C16:1 trans-9 + C17:0 iso, C16:1 cis-9, C17:0, C17:1 cis-10, C18:0, C18:1 cis-

9 and C18:3 cis-9, 12, 15.

Discussion

In this study, ruminal pH and NHs-N were not affected by dietary treatments, this
partly agrees with studies (Yang et al., 2009) who did not report ruminal pH
changes when cows were fed soybean oil and linseed oil, but did observe
increases in ruminal NH3-N concentration. Benchaar et al. (2012) reported no
effect on pH, VFA and NHs-N when dairy cows were supplemented with linseed oil
at 2, 3 and 4% DM. In the current study, lack of difference in ruminal fermentation
parameters may be due to the amount (almost 3% of DM) of oil incorporated into
the basal diet. Differences from other studies such as Yang et al. (2009), on the
effect dietary oils on ruminal fermentation parameters in dairy cows may be
explained by the amount of dietary oil and the forage source used, for example,

VFA patterns were not affected when cows were supplemented with linseed oil

12
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(3% DM) on a hay-base diet (Ueda et al., 2003) whereas on a corn silage-based

diet they were changed (Doreau et al., 2009).

The chemical configuration of dietary lipids is associated with their effects on
ruminal microorganisms. For example, PUFA are more toxic for biohydrogenating
bacteria (e.g., Butyrivibrio fibrisolvens) than monoenoic FA (Lourenco et al., 2010).
Consequently, SO which is a rich source of C18:2 cis n-6 is expected to have
strong negative effects on ruminal bacterial populations; this agrees in part with the
reduction of total bacteria (copies of 16S rDNA / ml) caused by SO treatment
observed in this study. During rumen byohydrogenation, C18:2 cis n-6 yields
several intermediate compounds until reduction to C18:0 (Castagnino et al., 2015).
In the present study, C18:1 trans-11 and C18:2 cis-9, trans-11 (biohydrogenation
intermediate isomers) were increased in rumen contents with SO compared to
control and HPO. This is important for milk production because those FA can
escape from the rumen and be secreted in milk as shown by Bu et al., (2007) who
observed increases in the C18:1 trans-11 and C18:2 cis-9, trans-11 concentrations
of milk fat when dairy cows were supplemented with vegetable oils and oilseeds

rich in C18:2 cis n-6.

Increases of C15:0 iso provoked by SO are particularly interesting, since branched-
chain FA have been suggested to reflect rumen function (e. g., ruminal
fermentation pattern) and also contribute to the formation of the main odd- and
branched-chain FA in milk (Vlaeminck et al., 2006). The odd- (C15:0 and C17:0)

and branched (C13:0 iso, C14:0 iso, C15:0 iso, C16:0 iso, C17:0 iso, C18:0 iso,

13
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C13:0 anteiso, C15:0 anteiso, C17:0 anteiso) chain fatty acids (OBCFA) profile of
the rumen bacteria appears to be largely determined by the FA synthase activity of
the microorganism rather than by the precursor availability (Vlaeminck et al., 2006).
Consequently, variation in the OBCFA profile leaving the rumen is expected to
mirror changes in the relative abundance of specific bacterial populations in the
rumen rather than an altered bacterial FA synthesis. In this study, supplementation
with SO may have influenced the FA synthase activity of ruminal microorganisms,
specifically from Prevotella spp. and Butyrivibrio fibrisolvens (Fievez et al., 2012). It
has been suggested that higher proportions of iso-fatty acids in solid associated
bacteria reflect their enrichment in cellulolytic bacteria (e. g., Butyrivibrio
fibrisolvens), whereas higher proportions of anteiso-C15:0 in liquid associated
bacteria might indicate their enrichment in pectin and sugar fermenting bacteria (e.

g., Prevotella spp.) (Bessa et al., 2009).

Normally in dairy cow diets, ruminal biohydrogenation of C18:2 cis n-6 varies
between 70% and 95%, indicating that with the exception of diets containing
marine lipids C18:0 is the major FA escaping from rumen (Shingfield et al., 2013).
In the present study this was corroborated by the FA profile of rumen digesta
where C16:0 and C18:0 were the most predominant saturated FA (especially in
HPO). Also, in the current study, HPO decreased ruminal C18:2 cis n-6, which may
be explained by the levels of C18:2 cis n-6 in the HPO diet which was notably

lower that control and SO.
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It has been recognized that cellulolytic bacteria can be affected by dietary
supplementation of lipid with high concentrations of PUFA (Paillard et al., 2007).
This is explained by factors such as disruption of microbial cell membranes and
cell function caused by PUFA and lipid coating of feed particles (especially fibrous
components) and bacteria (Yang et al., 2009). The antimicrobial effect of lipids in
the rumen is related to the cytotoxic effects of FA on membrane function of
eukaryotic cells (Maia et al., 2010). Long chain unsaturated FA appear to be more
toxic to ruminal bacteria since they can attach to lipid bilayers in bacterial
membranes (because of their hydrophobic and amphiphilic nature). The longer the
chains, and the more double bonds, the easier it is for FA to attach and destroy

membranes of bacteria (Zheng et al., 2005).

Although, Prevotella spp. has been reported to be resistant to dietary PUFA (Huws
et al.,, 2010), in this study, Prevotella bryantii load was increased by HPO (a
saturated source), which agrees in part with Choi et al. (2013) who reported that
C16:0 and C18:0 have less antibacterial effect than PUFA (HPO diet contained 46
g of C16:0 and 36 g of C18:0 per 100g total FA). In concordance with that, it has
been reported that consumption of animal fats (mainly saturated FA) has been
associated with the presence of Prevotella and Bacteroides (Tremaroli and
Backhed, 2012). Another possible explanation for increased Prevotella with the
HPO diet may be the interaction of a saturated lipid source and a substrate (our
basal diet comprised of 56% forage and 44% concentrate ratio). The Prevotella
spp. are the dominant bacteria in the rumen (Stevenson and Weimer, 2007) and

their ruminal populations vary according to different substrates, for example; on a

15



368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

hay diet, Prevotella ruminicola is the predominant whereas on a grain diet
Prevotella bryantii is the most numerous among these species (Tajima et al.,
2001). Our results are similar to those reported by Rico and Harvatine (2013) who
fed dairy cows with a control diet composed by 60% forage and 40% concentrate
and a low-fiber diet supplemented with 3 g/100g of SO, later, the authors (Rico et
al., 2015), studied the ruminal microbiome and found that the abundance of

Prevotella bryantii was lowered in the control diet.

This study used qPCR to analyze bacterial population’s concentrations using their
DNA and did not use isolation from pure cultures. Compared to culture dependent
studies, our results may be more precise because we avoided ‘plate count
anomaly’ and the use of laborious protocols to isolate the target bacterial
populations (Amann et al., 1995). The primers used in this study were previously
validated (Huws et al., 2010; Tajima et al., 2001). Furthermore, the primers were
checked using the probe match tool in the Ribosomal Database Project (Huws et
al., 2007; Cole et al., 2014). One interesting point is that the sum of the selected
bacterial populations corresponded to a half of the total bacterial, and this
observation was independent of the diet used. Therefore, more studies should be
performed to obtain a clear picture of the changes on ruminal bacterial populations;
a metagenomic approach could provide a deeper composition of ruminal

populations.

Conclusions
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In conclusion, supplementation with SO or HPO (2.7 % DM) did not affect ruminal
fermentation parameters whereas HPO can increase loads of ruminal Prevotella
bryantii. Also, results observed in our target bacteria may have depended on the

degree of saturation of dietary oils.
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Table 1 Ingredients and chemical composition of control, soybean oil (SO), and

hydrogenated palm oil (HPO) diets

Diet?
Control SO HPO
(% of DM)

Ingredient composition
Alfalfa hay 17 17 17
Corn silage 18 18 18
High-moisture corn 10 10 10
Soybean hulls 34 34 34
Wheat bran 19 19 19
Vitamin and mineral premix* 2 2 2
Soybean oil 0 2.7 0
Hydrogenated palm oil 0 0 2.7
Chemical composition, %
DM 53.6 53.6 53.6
CP 16.6 16.6 16.6
Ether extract 2.3 5.1 6.3
NDF 39.2 39.2 39.2
ADF 21.0 21.0 21.0
Lignin 3.6 3.6 3.6
Ash 6.0 6.0 6.0
Fatty acid composition, g/100g of FA
C4:0 0.03 0.09 0.73
C6:0 0.05 0.04 0.01
C8:0 0.03 0.03 0.07
C10:0 1.63 0.15 0.10
C12:0 0.16 0.13 2.08
C14:0 0.26 0.15 1.70
C16:0 15.6 13.7 45.9
c18:0 18.7 18.8 36.3
C18:1 cis-9 0.42 1.78 0.04
C18:2 cis n-6 46.9 49.5 5.03
C18:3 cis-6, 9, 12 0.17 0.10 0.19
C18:3 cis-9, 12, 15 7.44 6.38 0.55

1Contained per kg: 25, 000 mg of P; 80,000 mg of Ca; 25,000 mg of Mg; 1,612 mg
of S; 300,000 IU of vitamin A; 50,000 IU of vitamin D3 and 1,600 IU of vitamin E.
2Control = basal diet / no fat supplement; SO = basal diet + 170 g/d/ cow of SO;

HPO = basal diet + 170 g/d/cow of HPO.
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Table 2 PCR primers and template DNA for detection of ruminal bacteria

Target bacterium Primer? Primer Purified Product
concentration template of DNA  size (bp)
(UM) (ng)

Fibrobacter succinogenes  Forward GGTATGGGATGAGCTTGC 20 30 500
Reverse GCCTGCCCCTGAACTATC

Butyrivibrio proteoclasticus Forward TCCGGTGGTATGAGATGGGC 20 30 200
Reverse GTCGCTGCATCAGAGTTTCCT

Prevotella bryantii Forward ACTGCAGCGCGAACTGTCAGA 20 26 550
Reverse ACCTTACGGTGGCAGTGTCTC

Anaerovibrio lipolytica Forward TGGGTGTTAGAAATGGATTC 20 28 600
Reverse  CTCTCCTGCACTCAAGAATT

IFibrobacter succinogenes, Prevotella bryantii, and Anaerovibrio lipolytica primers were described by Tajima et al (2001)
whereas Butyrivibrio proteoclasticus primers were described by Huws et al. (2010).
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Table 3 Ruminal pH, NH3-N and VFA from cows fed control, soybean oil (SO), and

hydrogenated palm oil (HPO)

Diet!

Control SO HPO
pH 6.90 6.88 6.89
NHs-N (mg/dL) 13.6 119 143
Total VFA (mmol/L) 50.5 59.6 62.5
Molar proportion (mol/100 mol)
Acetate 63.9 63.9 63.7
Propionate 22.5 22.8 228
Butyrate 11.2 11.2 113
Valerate 2.4 2.4 2.3

SED
0.10
1.22
4.33

0.96
1.30
0.30
0.20

P-value

0.78
0.32
0.32

0.97
0.99
0.97
0.94

! Control = basal diet / no fat supplement; SO = basal diet + 170 g/d/ cow of SO;

HPO = basal diet + 170 g/d/cow of HPO.
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Table 4 Quantification of ruminal bacteria by PCR from cows fed control, soybean
oil (SO), and hydrogenated palm oil (HPO)

Diet!
Control SO HPO SED P-value
Total bacteria (copies 16S rDNA/ ml)?  11.84> 11.75¢ 12.062 0.08 <0.01
Target bacterium (bacteria/ml)? 3

Fibrobacter succinogenes 4.96 4.25 436 032 0.26
Butyrivibrio proteoclasticus 3.04 2.74 299 037 0.73
Prevotella bryantii 3.41> 351> 3,902 0.08 0.04
Anaerovibrio lipolytica 4.10 4.20 428 0.23 0.76

! Control = basal diet / no fat supplement; SO = basal diet + 170 g/d/ cow of SO;
HPO = basal diet + 170 g/d/cow of HPO.

2 Logio

3Based on ribosomal operon copy number

Means in the same row with different superscripts (a, b, c) are different (P<0.05)
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Table 5 Fatty acid composition of ruminal digesta from cows fed control, soybean
oil (SO), and hydrogenated palm oil (HPO)

Fatty acid (g/100g of fatty acid)

C10:0

C11:.0

C12:0

C13:.0

C14:0

Cl4:1

C15:0

C15:1 cis-10
C15:0is0

C16:0

C16:0iso

C16:1 trans-9 + C17:0 iso
C16:1 cis-9

C17:.0

C17:1 cis-10

c18:.0

C18:1 trans-11
C18:1 cis-9

C18:2 cis n-6

C18:2 cis-9, trans-11
C18:3cis-9, 12, 15
2 Saturated fatty acids

> Monounsaturated fatty acids
> Polyunsaturated fatty acids

2 Unsaturated fatty acids

Diet?

Control SO HPO
2.35 1.77 1.63
0.30 0.39 0.29
0.57 0.63 0.21
2.54 1.30 2.00
410 5.47 3.69
2.81 2.43 1.73
7.10 6.17 3.94
3.41 2.21 1.13
1.92b 2.762 1.04¢
35.06 32.84 41.62
2.40 1.35 0.28
0.93 0.63 0.46
0.66 0.52 0.39
1.59 1.74 0.79
0.61 0.78 0.69
17.00 16.42 31.61
0.96° 1.682 0.23¢
5.65 8.23 2.30
1.282 1.642 0.75°
1.42b 1.652 0.42¢
481 5.41 2.53
70.44 66.54 85.64
15.612  17.902  7.66°
6.92 7.88 3.56
22542 25792 11.22°

SED
0.90
0.24
0.17
0.84
1.53
1.05
2.21
0.79
0.43
3.89
2.23
0.26
0.10
0.48
0.30
6.24
0.06
2.88
0.38
0.06
1.50
7.03
3.26
1.87
4.63

P-value
0.71
0.92
0.23
0.44
0.53
0.61
0.42
0.10
0.04
0.17
0.52
0.28
0.24
0.21
0.85
0.11

<0.01
0.23

<0.01
0.03
0.24
0.07
0.04
0.16
0.04

! Control = basal diet / no fat supplement; SO = basal diet + 170 g/d/ cow of SO;
HPO = basal diet + 170 g/d/cow of HPO.
Means in the same row with different superscripts (a, b, c) are different (P<0.05)
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