111 research outputs found

    Proliferation of Escherichia coli O157 on washed and unwashed spinach leaves

    Get PDF
    This poster presentation is for the graduate student competition.Vegetable have recently been implicated in outbreaks of foodborne diseases. These outbreaks have led to increased scrutiny of vegetable processing and sanitation. The purpose of this study was to determine the fate of Escherichia coli O157 on washed and unwashed spinach leaves. Unwashed and washed (100 ppm sodium hypochlorite for one minute) samples were inoculated with a non-toxigenic strain of E. coli O157. The samples were dried for one hour. The total plate count (TPC) and E. coli O157 counts were taken immediately after drying and on days 3, 5, 7, 9, and 11 while stored at 4°C. The same counts were taken on days 1, 2, and 3 for samples stored at room temperature. At room temperature, differences between washed and unwashed spinach leaves were not observed. The TPC from washed and unwashed samples was similar at both temperatures. The E. coli O157 counts on both washed and unwashed leaves decreased, but there was a greater decrease on the unwashed spinach leaves (P=0.007). Although the TPC counts were similar on both washed and unwashed leaves, it is possible that the microbial communities differed on washed and unwashed leaves or the TPC did not microorganisms that would affect the survival and proliferation of E. coli O157. Enteric pathogens that contaminate vegetables after sanitation at a processing facility could negatively affect produce safety possibly due to changes in the microbial community dynamics on leaf surfaces

    Ferromanganese micronodules from the surficial sediments of Georges Bank

    Get PDF
    Ferromanganese micronodules have been found on Georges Bank, off the U.S. northeast coast, distributed throughout the surficial sediments within an area about 125 km long and at least 12 km wide. These coarse, sand-sized concretions have precipitated from metal-rich interstitial waters and contain many of the textural and structural features common to other neritic nodules. Most of the nodules have accreted around detrital grains, and X-ray powder diffraction analyses indicate the presence of geothite and vernadite (δ-MnO2) in the ferromanganese layers. Chemical analyses of the micronodules, when compared with similar data on deep-sea manganese nodules, reveal lower Mn/Fe ratios, significantly higher concentrations of V and As, comparable values of Mo, and an order of magnitude less of Co, Ni, Ce and most other metals

    Activity-regulated RNA editing in select neuronal subfields in hippocampus

    Get PDF
    RNA editing by adensosine deaminases is a widespread mechanism to alter genetic information in metazoa. In addition to modifications in non-coding regions, editing contributes to diversification of protein function, in analogy to alternative splicing. However, although splicing programs respond to external signals, facilitating fine tuning and homeostasis of cellular functions, a similar regulation has not been described for RNA editing. Here, we show that the AMPA receptor R/G editing site is dynamically regulated in the hippocampus in response to activity. These changes are bi-directional, reversible and correlate with levels of the editase Adar2. This regulation is observed in the CA1 hippocampal subfield but not in CA3 and is thus subfield/celltype-specific. Moreover, alternative splicing of the flip/flop cassette downstream of the R/G site is closely linked to the editing state, which is regulated by Ca(2+). Our data show that A-to-I RNA editing has the capacity to tune protein function in response to external stimuli

    Salmonella and tomatoes

    Get PDF
    Outbreak information linking fresh tomato fruit to illnesses is reviewed in this chapter. While tomato fruit appear to support substantial proliferation of certain serovars of Salmonella enterica, detection of this pathogen in tomato plants prior to harvest is rare, and reports of Salmonella existence in tomato fruit still attached to field-grown plants are virtually non-existent. The bacterium is sensitive to UV and can be outcompeted by the native phytomicrobiota, which may explain its absence in field-grown crops. However, the persistence of certain serovars in fields and ponds of certain production areas is noted. Together with evidence of bacteria becoming internalized in tomato fruit during crop development likely through natural apertures, the presence of S. enterica in and around production fields suggests that an unusual weather event could lead to Salmonella contamination of fruit prior to harvest. The bacterium appears physiologically adaptive toward proliferation in tomato fruit. Once inside tomatoes, Salmonella is capable of sensing the availability of nutrients and physiological state of the fruit and differentially regulates specific genes. However, because Salmonella is an efficient nutrient scavenger, removal of multiple metabolic and regulatory genes was required to reduce its fitness within the fruit. Plants do not appear to recognize human enterics as pathogens, and their defenses treat them as endophytes

    Factors that affect proliferation of Salmonella in tomatoes post-harvest: the roles of seasonal effects, irrigation regime, crop and pathogen genotype

    Get PDF
    MAIN OBJECTIVES: Fresh fruits and vegetables become increasingly recognized as vehicles of human salmonellosis. Physiological, ecological, and environmental factors are all thought to contribute to the ability of Salmonella to colonize fruits and vegetables pre- and post-harvest. The goal of this study was to test how irrigation levels, fruit water congestion, crop and pathogen genotypes affect the ability of Salmonella to multiply in tomatoes post-harvest. EXPERIMENTAL DESIGN: Fruits from three tomato varieties, grown over three production seasons in two Florida locations, were infected with seven strains of Salmonella and their ability to multiply post-harvest in field-grown tomatoes was tested. The field experiments were set up as a two-factor factorial split plot experiment, with the whole-plot treatments arranged in a randomized complete-block design. The irrigation treatment (at three levels) was the whole-plot factor, and the split-plot factor was tomato variety, with three levels. The significance of the main, two-way, and three-way interaction effects was tested using the (type III) F-tests for fixed effects. Mean separation for each significant fixed effect in the model was performed using Tukey's multiple comparison testing procedure. MOST IMPORTANT DISCOVERIES AND SIGNIFICANCE: The irrigation regime per se did not affect susceptibility of the crop to post-harvest proliferation of Salmonella. However, Salmonella grew significantly better in water-congested tissues of green tomatoes. Tomato maturity and genotype, Salmonella genotype, and inter-seasonal differences were the strongest factors affecting proliferation. Red ripe tomatoes were significantly and consistently more conducive to proliferation of Salmonella. Tomatoes harvested in the driest, sunniest season were the most conducive to post-harvest proliferation of the pathogen. Statistically significant interactions between production conditions affected post-harvest susceptibility of the crop to the pathogen. UV irradiation of tomatoes post-harvest promoted Salmonella growth

    A structural determinant required for RNA editing

    Get PDF
    RNA editing by adenosine deaminases acting on RNAs (ADARs) can be both specific and non-specific, depending on the substrate. Specific editing of particular adenosines may depend on the overall sequence and structural context. However, the detailed mechanisms underlying these preferences are not fully understood. Here, we show that duplex structures mimicking an editing site in the Gabra3 pre-mRNA unexpectedly fail to support RNA editing at the Gabra3 I/M site, although phylogenetic analysis suggest an evolutionarily conserved duplex structure essential for efficient RNA editing. These unusual results led us to revisit the structural requirement for this editing by mutagenesis analysis. In vivo nuclear injection experiments of mutated editing substrates demonstrate that a non-conserved structure is a determinant for editing. This structure contains bulges either on the same or the strand opposing the edited adenosine. The position of these bulges and the distance to the edited base regulate editing. Moreover, elevated folding temperature can lead to a switch in RNA editing suggesting an RNA structural change. Our results indicate the importance of RNA tertiary structure in determining RNA editing

    Small DNA Pieces in C. elegans Are Intermediates of DNA Fragmentation during Apoptosis

    Get PDF
    While studying small noncoding RNA in C. elegans, we discovered that protocols used for isolation of RNA are contaminated with small DNA pieces. After electrophoresis on a denaturing gel, the DNA fragments appear as a ladder of bands, ∼10 nucleotides apart, mimicking the pattern of nuclease digestion of DNA wrapped around a nucleosome. Here we show that the small DNA pieces are products of the DNA fragmentation that occurs during apoptosis, and correspondingly, are absent in mutant strains incapable of apoptosis. In contrast, the small DNA pieces are present in strains defective for the engulfment process of apoptosis, suggesting they are produced in the dying cell prior to engulfment. While the small DNA pieces are also present in a number of strains with mutations in predicted nucleases, they are undetectable in strains containing mutations in nuc-1, which encodes a DNase II endonuclease. We find that the small DNA pieces can be labeled with terminal deoxynucleotidyltransferase only after phosphatase treatment, as expected if they are products of DNase II cleavage, which generates a 3′ phosphate. Our studies reveal a previously unknown intermediate in the process of apoptotic DNA fragmentation and thus bring us closer to defining this important pathway

    In C. elegans, High Levels of dsRNA Allow RNAi in the Absence of RDE-4

    Get PDF
    C. elegans Dicer requires an accessory double-stranded RNA binding protein, RDE-4, to enact the first step of RNA interference, the cleavage of dsRNA to produce siRNA. While RDE-4 is typically essential for RNAi, we report that in the presence of high concentrations of trigger dsRNA, rde-4 deficient animals are capable of silencing a transgene. By multiple criteria the silencing occurs by the canonical RNAi pathway. For example, silencing is RDE-1 dependent and exhibits a decrease in the targeted mRNA in response to an increase in siRNA. We also find that high concentrations of dsRNA trigger lead to increased accumulation of primary siRNAs, consistent with the existence of a rate-limiting step during the conversion of primary to secondary siRNAs. Our studies also revealed that transgene silencing occurs at low levels in the soma, even in the presence of ADARs, and that at least some siRNAs accumulate in a temperature-dependent manner. We conclude that an RNAi response varies with different conditions, and this may allow an organism to tailor a response to specific environmental signals

    A new Holocene eruptive history of Erebus volcano, Antarctica using cosmogenic 3He and 36Cl exposure ages

    Get PDF
    AbstractThe ages of recent effusive eruptions on Erebus volcano, Antarctica are poorly known. Published 40Ar/39Ar ages of the 10 youngest “post-caldera” lava flows are unreliable because of the young ages of the flows (<10 ka) and the presence of excess 40Ar. Here we use cosmogenic 3He and 36Cl to provide new ages for the 10 youngest flows and 3 older summit flows, including a newly recognized flow distinguished by its exposure age. Estimated eruption ages of the post-caldera flows, assuming no erosion or prior snow cover, range from 4.52 ± 0.08 ka to 8.50 ± 0.19 ka, using Lifton et al. (2014) to scale cosmogenic production rates. If the older Lal (1991)/Stone (2000) model is used to scale production rates, calculated ages are older by 16–25%. Helium-3 and chlorine-36 exposure ages measured on the same samples show excellent agreement. Helium-3 ages measured on clinopyroxene and olivine from the same samples are discordant, probably due in part to lower-than-expected 3He production rates in the Fe-rich olivine. Close agreement of multiple clinopyroxene 3He ages from each flow indicates that the effects of past snow coverage on the exposure ages have been minimal.The new cosmogenic ages differ considerably from published 40Ar/39Ar and 36Cl ages and reveal that the post-caldera flows were erupted during relatively brief periods of effusive activity spread over an interval of ∼4 ka. The average eruption rate over this interval is estimated to be 0.01 km3/ka. Because the last eruption was at least 4 ka ago, and the longest repose interval between the 10 youngest eruptions is ∼1 ka, we consider the most recent period of effusive activity to have ended
    corecore