101 research outputs found

    Weiterbildung an Hochschulen

    Get PDF
    Bade-Becker U, Jütte W. Weiterbildung an Hochschulen. In: Tippelt R, von Hippel A, eds. Handbuch Erwachsenenbildung/Weiterbildung. Springer Reference Sozialwissenschaften. Wiesbaden: Springer Fachmedien; 2018: 821-836

    The rotation-coupled sliding of EcoRV

    Get PDF
    It has been proposed that certain type II restriction enzymes (REs), such as EcoRV, track the helical pitch of DNA as they diffuse along DNA, a so-called rotation-coupled sliding. As of yet, there is no direct experimental observation of this phenomenon, but mounting indirect evidence gained from single-molecule imaging of RE–DNA complexes support the hypothesis. We address this issue by conjugating fluorescent labels of varying size (organic dyes, proteins and quantum dots) to EcoRV, and by fusing it to the engineered Rop protein scRM6. Single-molecule imaging of these modified EcoRVs sliding along DNA provides us with their linear diffusion constant (D1), revealing a significant size dependency. To account for the dependence of D1 on the size of the EcoRV label, we have developed four theoretical models describing different types of motion along DNA and find that our experimental results are best described by rotation-coupled sliding of the protein. The similarity of EcoRV to other type II REs and DNA binding proteins suggests that this type of motion could be widely preserved in other biological contexts

    Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA

    Get PDF
    The restriction endonuclease EcoRV can rapidly locate a short recognition site within long non-cognate DNA using ‘facilitated diffusion’. This process has long been attributed to a sliding mechanism, in which the enzyme first binds to the DNA via nonspecific interaction and then moves along the DNA by 1D diffusion. Recent studies, however, provided evidence that 3D translocations (hopping/jumping) also help EcoRV to locate its target site. Here we report the first direct observation of sliding and jumping of individual EcoRV molecules along nonspecific DNA. Using fluorescence microscopy, we could distinguish between a slow 1D diffusion of the enzyme and a fast translocation mechanism that was demonstrated to stem from 3D jumps. Salt effects on both sliding and jumping were investigated, and we developed numerical simulations to account for both the jump frequency and the jump length distribution. We deduced from our study the 1D diffusion coefficient of EcoRV, and we estimated the number of jumps occurring during an interaction event with nonspecific DNA. Our results substantiate that sliding alternates with hopping/jumping during the facilitated diffusion of EcoRV and, furthermore, set up a framework for the investigation of target site location by other DNA-binding proteins

    Customer Interaction and Innovation in Hybrid Offerings:Investigating Moderation and Mediation Effects for Goods and Services Innovation

    Get PDF
    Hybrid offerings are bundles of goods and services offerings provided by the same firm. Bundling value offerings affects how firms innovate, interact with customers, and customize their goods and services. However, it remains unclear how customer interaction might drive the innovation performance of various bundled components. Therefore, this study investigates the effects of customer interactions and service customization on both goods and services innovations in a hybrid offering context, using a unique data set of 146 information technology and manufacturing firms. Customer interaction appears beneficial to both goods and services innovation in a hybrid offerings context, but service customization has different direct effects on goods versus services innovation. As a potential mediator, customer knowledge mobilization resources exert different effects on the goods and services elements of hybrid offerings. Furthermore, for high-interaction customers, medium levels of technical modularity lead to most favorable innovation outcomes for services innovation. The results thus suggest that providers of hybrid offerings should foster customer interactions, to drive the innovation performance of the good and service components, while still making sure to implement service customization strategies. These findings have notable implications for service innovation research

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
    corecore