70 research outputs found

    First results in modelling distribution patterns of anecic earthworms on catchment scale: a Boosted Regres-sion Tree model approach

    Get PDF
    Earthworms can serve as indicator species for various important soil processes. Therefore we can link distribution patterns of earthworms to the incidence of induced soil processes. Species distribution models can help us to predict earthworm distributions on different scales. Studies on larger scales are rare due to large efforts in data acquisition, especially if the focus is on process understanding. The current study focuses on anecic earthworms using a Boosted regression tree model approach for predicting the earthworm distribution in an agricultural area in Baden- WĂŒrttemberg (Germany). We surveyed management, topography, soil parameters and presence-absence, abundance and fresh weight of anecic earthworms (i.e. Lumbricus terrestris) at 75 locations within the Weiherbach catchment. Our final model has acceptable performance (AUC=0.76 after validation). Topographic indices (wetness and Beer’s index) as well as soil parameters such as moisture, texture and tillage are the most relevant environmental predictors

    Impact of Temporal Macropore Dynamics on Infiltration : Field Experiments and Model Simulations

    Get PDF
    Macropores greatly affect water and solute transport in soils. Most macropores are of biogenic origin; however, the resulting seasonal dynamics are often neglected. Our study aimed to examine temporal changes in biopore networks and the resulting infiltration patterns. We performed infiltration experiments with Brilliant Blue on pastureland in the Luxembourgian Attert catchment (spring, summer, and autumn 2015). We developed an image-processing scheme to identify and quantify changes in biopores and infiltration patterns. Subsequently, we used image-derived biopore metrics to parameterize the ecohydrological model echoRD (ecohydrological particle model based on representative domains), which includes explicit macropore flow and interaction with the soil matrix. We used the model simulations to check whether biopore dynamics affect infiltration. The observed infiltration patterns revealed variations in both biopore numbers and biopore–matrix interaction. The field-observed biopore numbers varied over time, mainly in the topsoil, with the largest biopore numbers in spring and the smallest in summer. The number of hydrologically effective biopores in the topsoil seems to determine the number and thereby the fraction of effective biopores in the subsoil. In summer, a strong biopore–matrix interaction was observed. In spring, the dominant process was rapid drainage, whereas in summer and autumn, most of the irrigated water was stored in the examined profiles. The model successfully simulated infiltration patterns for spring, summer, and autumn using temporally different macropore setups. Using a static macropore parameterization the model output deviated from the observed infiltration patterns, which emphasizes the need to consider macropores and their temporal dynamics in soil hydrological modeling

    Incorporating Ecohydrological Processes Into an Analysis of Charcoal-Livestock Production Systems in the Tropics: An Alternative Interpretation of the Water-Energy-Food Nexus

    Get PDF
    In the tropics, livestock grazing usually occurs simultaneously with charcoal production, yet empirical understanding of the combined activities remains poor, especially in terms of their effects on hydrological functions. Given predicted growth in both charcoal and beef production in Sub-Sahara Africa, South East Asia, and Central and South America, understanding the potential effects of maintaining this dual production system on local and landscape level hydrological dynamics is paramount for ensuring long-term ecosystem sustainability. Based on a synthesis of existing literature, we propose a theoretical and conceptual framework for analyzing the interlinks between charcoal, livestock, and hydrological processes where they co-exist. As a silo approach, we first analyze the isolated effects of charcoal production and livestock on hydrological processes before exploring their combined effects (systemic approach). Given the scarcity of studies that explicitly address the influence of traditional small-scale charcoal production on hydrological processes, we base our findings on existing knowledge about deforestation, forest fire and grazing impacts on hydrology. We find that exclusion of the effects of companion activities and omission of information on the intensity of biomass harvesting (i.e., pruning branches, selective harvest, clear cutting, uprooting tree stumps) can lead to over-attributing changes in hydrological processes to charcoal, thus exaggerating the effects on ecosystems which might lead to inappropriate interventions. We also find that, in the case of livestock keeping, impacts on hydrological processes are highly dependent on grazing intensity, with low intensity grazing possibly having negligible or even positive effects on forest regrowth and thereby restoration of hydrological processes. Thus, the charcoal-livestock-water nexus may have a wide range of outcomes for hydrological processes from negligible to highly profound effects, depending on key decisions in management and practice. To test these findings, however, field studies are needed that explicitly treat the combined effects of different biomass harvesting practices and grazing intensities on hydrological processes across different scales. Albeit conceptual at this stage, we believe that our approach is a necessary first step in the process of diagnosing potential shortcomings of past approaches for studying charcoal production systems and developing new understanding of this three-way nexus

    OCT1 polymorphism is associated with response and survival time in anti-Parkinsonian drug users

    Get PDF
    Substrates for the Organic Cation Transporter 1, encoded by the SLC22A1 gene, are metformin, amantadine, pramipexole, and, possibly, levodopa. Recently, we identified that the rs622342 A > C polymorphism is associated with the HbA1c lowering effect in metformin users. In the Rotterdam Study, we associated this polymorphism with higher prescribed doses of all anti-Parkinsonian drugs. Between the first and fifth prescriptions for levodopa, for each minor rs622342 C allele, the prescribed doses were 0.34 defined daily dose higher (95% CI 0.064, 0.62; p = 0.017). The mortality ratio after start of levodopa therapy was 1.47 times higher (95% CI 1.01, 2.13; p = 0.045)

    A Sensitive Assay for Virus Discovery in Respiratory Clinical Samples

    Get PDF
    In 5–40% of respiratory infections in children, the diagnostics remain negative, suggesting that the patients might be infected with a yet unknown pathogen. Virus discovery cDNA-AFLP (VIDISCA) is a virus discovery method based on recognition of restriction enzyme cleavage sites, ligation of adaptors and subsequent amplification by PCR. However, direct discovery of unknown pathogens in nasopharyngeal swabs is difficult due to the high concentration of ribosomal RNA (rRNA) that acts as competitor. In the current study we optimized VIDISCA by adjusting the reverse transcription enzymes and decreasing rRNA amplification in the reverse transcription, using hexamer oligonucleotides that do not anneal to rRNA. Residual cDNA synthesis on rRNA templates was further reduced with oligonucleotides that anneal to rRNA but can not be extended due to 3â€Č-dideoxy-C6-modification. With these modifications >90% reduction of rRNA amplification was established. Further improvement of the VIDISCA sensitivity was obtained by high throughput sequencing (VIDISCA-454). Eighteen nasopharyngeal swabs were analysed, all containing known respiratory viruses. We could identify the proper virus in the majority of samples tested (11/18). The median load in the VIDISCA-454 positive samples was 7.2 E5 viral genome copies/ml (ranging from 1.4 E3–7.7 E6). Our results show that optimization of VIDISCA and subsequent high-throughput-sequencing enhances sensitivity drastically and provides the opportunity to perform virus discovery directly in patient material

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.Peer reviewe

    Do earthworms (D. veneta) influence plant-available water in technogenic soil-like substrate from bricks and compost?

    No full text
    Purpose: Topsoil and peat are often taken from intact rural ecosystems to supply the urban demand for fertile soils and soil-like substrates. One way of reducing this exploitation is to recycle suitable urban wastes to produce Technosols and technogenic soil-like substrates. In this study, we investigate the role earthworms can play in impacting the hydraulic properties of such a soil-like substrate.Deutsche ForschungsgemeinschaftBundesministerium fĂŒr Bildung und Forschung http://dx.doi.org/10.13039/501100002347Berlin International Graduate School on Model and Simulation based Researc

    Time-lapse 3D GPR imaging of brilliant blue infiltration experiments

    No full text
    Preferential flow due to fingering, funnelling or macropore flow results in small scale spatial variability in infiltration. On the plot scale (∌ 1 m × 1 m), a common method to characterize such infiftration patterns are sprinkling experiments using dye tracers. Typically, the resulting patterns are analyzed after excavation using digital photographs of selected vertical 2D slices. The observed preferential flow paths vary in scafe from centimeters to decimeters width, often reveafing rather compficated 3D flow networks. In this study, we examine the potential of surface based 3D ground-penetrating radar (GPR) to image subsurface flow patterns from such dye tracer experiments. Our approach is based on time-tapse 3D (i.e., 4D) GPR surveys using 500 MHz antennas. In a case study, we compare the resufts from our GPR-based imaging approach to the patterns observed in digitaf photographs after excavation. Our resuits show that GPR is a feasibie technique to non-invasiveiy image major flow patterns in 3D and, compared to the ctassicaf invasive approach, provides the opportunity to image the temporat evofution of the associated infiltration patterns
    • 

    corecore