1,162 research outputs found
Recent Star Formation in Sextans A
We investigate the relationship between the spatial distributions of stellar
populations and of neutral and ionized gas in the Local Group dwarf irregular
galaxy Sextans A. This galaxy is currently experiencing a burst of localized
star formation, the trigger of which is unknown. We have resolved various
populations of stars via deep UBV(RI)_C imaging over an area with diameter \sim
5.'3. We have compared our photometry with theoretical isochrones appropriate
for Sextans A, in order to determine the ages of these populations. We have
mapped out the history of star formation, most accurately for times \lesssim
100 Myr. We find that star formation in Sextans A is correlated both in time
and space, especially for the most recent (\lesssim 12 Myr) times. The youngest
stars in the galaxy are forming primarily along the inner edge of the large H I
shell. Somewhat older populations, \lesssim 50 Myr, are found inward of the
youngest stars. Progressively older star formation, from \sim 50--100 Myr,
appears to have some spatially coherent structure and is more centrally
concentrated. The oldest stars we can accurately sample appear to have
approximately a uniform spatial distribution, which extends beyond a surface
brightness of \mu_B \simeq 25.9 mag arcsec^{-2} (or, a radius r \simeq 2.'3$).
Although other processes are also possible, our data provides support for a
mechanism of supernova-driven expansion of the neutral gas, resulting in cold
gas pileup and compression along the H I shell and sequential star formation in
recent times.Comment: 64 pages, 22 figures, to appear in A
Orbit-Based Dynamical Models of the Sombrero Galaxy (NGC 4594)
We present axisymmetric, orbit-based models to study the central black hole,
stellar mass-to-light ratio, and dark matter halo of NGC 4594 (M104, the
Sombrero Galaxy). For stellar kinematics, we use published high-resolution
kinematics of the central region taken with the Hubble Space Telescope, newly
obtained Gemini long-slit spectra of the major axis, and integral field
kinematics from the SAURON instrument. At large radii, we use globular cluster
kinematics to trace the mass profile and apply extra leverage to recovering the
dark matter halo parameters. We find a black hole of mass M_{\bullet}=(6.6 +/-
0.4) x 10^8 M_{\odot}, and determine the stellar M/L_I=3.4 +/- 0.05
(uncertainties are the 68% confidence band marginalized over the other
parameters). Our best fit dark matter halo is a cored logarithmic model with
asymptotic circular speed V_c=376 +/- 12 km/s and core radius r_c= 4.7 +/- 0.6
kpc. The fraction of dark to total mass contained within the half-light radius
is 0.52. Taking the bulge and disk components into account in our calculation
of \sigma_e puts NGC 4594 squarely on the M-\sigma relation. We also determine
that NGC 4594 lies directly on the M-L relation.Comment: 13 pages, 10 figures, accepted for publication in Ap
The Fine-Scale Structure of the neutral Interstellar Medium in nearby Galaxies
We present an analysis of the properties of HI holes detected in 20 galaxies
that are part of "The HI Nearby Galaxy Survey" (THINGS). We detected more than
1000 holes in total in the sampled galaxies. Where they can be measured, their
sizes range from about 100 pc (our resolution limit) to about 2 kpc, their
expansion velocities range from 4 to 36 km/s, and their ages are estimated to
range between 3 and 150 Myr. The holes are found throughout the disks of the
galaxies, out to the edge of the HI; 23% of the holes fall outside R25. We find
that shear limits the age of holes in spirals (shear is less important in dwarf
galaxies) which explains why HI holes in dwarfs are rounder, on average than in
spirals. Shear, which is particularly strong in the inner part of spiral
galaxies, also explains why we find that holes outside R25 are larger and
older. We derive the scale height of the HI disk as a function of
galactocentric radius and find that the disk flares up in all galaxies. We
proceed to derive the surface and volume porosity (Q2D and Q3D) and find that
this correlates with the type of the host galaxy: later Hubble types tend to be
more porous. The size distribution of the holes in our sample follows a power
law with a slope of a ~ -2.9. Assuming that the holes are the result of massive
star formation, we derive values for the supernova rate (SNR) and star
formation rate (SFR) which scales with the SFR derived based on other tracers.
If we extrapolate the observed number of holes to include those that fall below
our resolution limit, down to holes created by a single supernova, we find that
our results are compatible with the hypothesis that HI holes result from star
formation.Comment: 142 pages, 55 figures, accepted for publication in the Astronomical
Journa
Globular cluster systems in fossil groups: NGC6482, NGC1132 and ESO306-017
We study the globular cluster (GC) systems in three representative fossil
group galaxies: the nearest (NGC6482), the prototype (NGC1132) and the most
massive known to date (ESO306-017). This is the first systematic study of GC
systems in fossil groups. Using data obtained with the Hubble Space Telescope
Advanced Camera for Surveys in the F475W and F850LP filters, we determine the
GC color and magnitude distributions, surface number density profiles, and
specific frequencies. In all three systems, the GC color distribution is
bimodal, the GCs are spatially more extended than the starlight, and the red
population is more concentrated than the blue. The specific frequencies seem to
scale with the optical luminosities of the central galaxy and span a range
similar to that of the normal bright elliptical galaxies in rich environments.
We also analyze the galaxy surface brightness distributions to look for
deviations from the best-fit S\'ersic profiles; we find evidence of recent
dynamical interaction in all three fossil group galaxies. Using X-ray data from
the literature, we find that luminosity and metallicity appear to correlate
with the number of GCs and their mean color, respectively. Interestingly,
although NGC6482 has the lowest mass and luminosity in our sample, its GC
system has the reddest mean color, and the surrounding X-ray gas has the
highest metallicity.Comment: 16 pages, 13 figures. Accepted for publication in A&
Calibration and Characterization of the IceCube Photomultiplier Tube
Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube
neutrino observatory. Many are placed deep in the ice to detect Cherenkov light
emitted by the products of high-energy neutrino interactions, and others are
frozen into tanks on the surface to detect particles from atmospheric cosmic
ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu
Photonics. This paper describes the laboratory characterization and calibration
of these PMTs before deployment. PMTs were illuminated with pulses ranging from
single photons to saturation level. Parameterizations are given for the single
photoelectron charge spectrum and the saturation behavior. Time resolution,
late pulses and afterpulses are characterized. Because the PMTs are relatively
large, the cathode sensitivity uniformity was measured. The absolute photon
detection efficiency was calibrated using Rayleigh-scattered photons from a
nitrogen laser. Measured characteristics are discussed in the context of their
relevance to IceCube event reconstruction and simulation efforts.Comment: 40 pages, 12 figure
Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of December 27th, 2004 with the AMANDA-II detector
On December 27th 2004, a giant gamma flare from the Soft Gamma-ray Repeater
1806-20 saturated many satellite gamma-ray detectors. This event was by more
than two orders of magnitude the brightest cosmic transient ever observed. If
the gamma emission extends up to TeV energies with a hard power law energy
spectrum, photo-produced muons could be observed in surface and underground
arrays. Moreover, high-energy neutrinos could have been produced during the SGR
giant flare if there were substantial baryonic outflow from the magnetar. These
high-energy neutrinos would have also produced muons in an underground array.
AMANDA-II was used to search for downgoing muons indicative of high-energy
gammas and/or neutrinos. The data revealed no significant signal. The upper
limit on the gamma flux at 90% CL is dN/dE < 0.05 (0.5) TeV^-1 m^-2 s^-1 for
gamma=-1.47 (-2). Similarly, we set limits on the normalization constant of the
high-energy neutrino emission of 0.4 (6.1) TeV^-1 m^-2 s^-1 for gamma=-1.47
(-2).Comment: 14 pages, 3 figure
Lateral Distribution of Muons in IceCube Cosmic Ray Events
In cosmic ray air showers, the muon lateral separation from the center of the
shower is a measure of the transverse momentum that the muon parent acquired in
the cosmic ray interaction. IceCube has observed cosmic ray interactions that
produce muons laterally separated by up to 400 m from the shower core, a factor
of 6 larger distance than previous measurements. These muons originate in high
pT (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy
secondary interactions. The separation distribution shows a transition to a
power law at large values, indicating the presence of a hard pT component that
can be described by perturbative quantum chromodynamics. However, the rates and
the zenith angle distributions of these events are not well reproduced with the
cosmic ray models tested here, even those that include charm interactions. This
discrepancy may be explained by a larger fraction of kaons and charmed
particles than is currently incorporated in the simulations
An improved method for measuring muon energy using the truncated mean of dE/dx
The measurement of muon energy is critical for many analyses in large
Cherenkov detectors, particularly those that involve separating
extraterrestrial neutrinos from the atmospheric neutrino background. Muon
energy has traditionally been determined by measuring the specific energy loss
(dE/dx) along the muon's path and relating the dE/dx to the muon energy.
Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in
dE/dx values is quite large, leading to a typical energy resolution of 0.29 in
log10(E_mu) for a muon observed over a 1 km path length in the IceCube
detector. In this paper, we present an improved method that uses a truncated
mean and other techniques to determine the muon energy. The muon track is
divided into separate segments with individual dE/dx values. The elimination of
segments with the highest dE/dx results in an overall dE/dx that is more
closely correlated to the muon energy. This method results in an energy
resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This
technique is applicable to any large water or ice detector and potentially to
large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1
In order to identify the sources of the observed diffuse high-energy neutrino
flux, it is crucial to discover their electromagnetic counterparts. IceCube
began releasing alerts for single high-energy ( TeV) neutrino
detections with sky localisation regions of order 1 deg radius in 2016. We used
Pan-STARRS1 to follow-up five of these alerts during 2016-2017 to search for
any optical transients that may be related to the neutrinos. Typically 10-20
faint ( mag) extragalactic transients are found within the
Pan-STARRS1 footprints and are generally consistent with being unrelated field
supernovae (SNe) and AGN. We looked for unusual properties of the detected
transients, such as temporal coincidence of explosion epoch with the IceCube
timestamp. We found only one transient that had properties worthy of a specific
follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of
astrophysical origin of 50 %), we found a SN PS16cgx, located at 10.0'
from the nominal IceCube direction. Spectroscopic observations of PS16cgx
showed that it was an H-poor SN at z = 0.2895. The spectra and light curve
resemble some high-energy Type Ic SNe, raising the possibility of a jet driven
SN with an explosion epoch temporally coincident with the neutrino detection.
However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously
difficult. Based on all available data we conclude that the transient is more
likely to be a Type Ia with relatively weak SiII absorption and a fairly normal
rest-frame r-band light curve. If, as predicted, there is no high-energy
neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence,
and unrelated to the IceCube-160427A. We find no other plausible optical
transient for any of the five IceCube events observed down to a 5
limiting magnitude of mag, between 1 day and 25 days after
detection.Comment: 20 pages, 6 figures, accepted to A&
- …