232 research outputs found

    Polymer brush collapse under shear flow

    Full text link
    Shear responsive surfaces offer potential advances in a number of applications. Surface functionalisation using polymer brushes is one route to such properties, particularly in the case of entangled polymers. We report on neutron reflectometry measurements of polymer brushes in entangled polymer solutions performed under controlled shear, as well as coarse-grained computer simulations corresponding to these interfaces. Here we show a reversible and reproducible collapse of the brushes, increasing with the shear rate. Using two brushes of greatly different chain lengths and grafting densities, we demonstrate that the dynamics responsible for the structural change of the brush are governed by the free chains in solution rather than the brush itself, within the range of parameters examined. The phenomenon of the brush collapse could find applications in the tailoring of nanosensors, and as a way to dynamically control surface friction and adhesion

    Turning a Killing Mechanism into an Adhesion and Antifouling Advantage

    Get PDF
    Mild and universal methods to introduce functionality in polymeric surfaces remain a challenge. Herein, a bacterial killing mechanism based on amphiphilic antimicrobial peptides is turned into an adhesion advantage. Surface activity (surfactant) of the antimicrobial liquid chromatography peak I (LCI) peptide is exploited to achieve irreversible binding of a protein–polymer hybrid to surfaces via physical interactions. The protein–polymer hybrid consists of two blocks, a surface‐affine block (LCI) and a functional block to prevent protein fouling on surfaces by grafting antifouling polymers via single electron transfer‐living radical polymerization (SET‐LRP). The mild conditions of SET‐LRP of N‐2‐hydroxy propyl methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) preserve the secondary structure of the fusion protein. Adsorption kinetics and grafting densities are assessed using surface plasmon resonance and ellipsometry on model gold surfaces, while the functionalization of a range of artificial and natural surfaces, including teeth, is directly observed by confocal microscopy. Notably, the fusion protein modified with poly(HPMA) completely prevents the fouling from human blood plasma and thereby exhibits a resistance to protein fouling that is comparable to the best grafted‐from polymer brushes. This, combined with their simple application on a large variety of materials, highlights the universal and scalable character of the antifouling concept

    Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Get PDF
    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    The A-Current Modulates Learning via NMDA Receptors Containing the NR2B Subunit

    Get PDF
    Synaptic plasticity involves short- and long-term events, although the molecular mechanisms that underlie these processes are not fully understood. The transient A-type K+ current (IA) controls the excitability of the dendrites from CA1 pyramidal neurons by regulating the back-propagation of action potentials and shaping synaptic input. Here, we have studied how decreases in IA affect cognitive processes and synaptic plasticity. Using wild-type mice treated with 4-AP, an IA inhibitor, and mice lacking the DREAM protein, a transcriptional repressor and modulator of the IA, we demonstrate that impairment of IA decreases the stimulation threshold for learning and the induction of early-LTP. Hippocampal electrical recordings in both models revealed alterations in basal electrical oscillatory properties toward low-theta frequencies. In addition, we demonstrated that the facilitated learning induced by decreased IA requires the activation of NMDA receptors containing the NR2B subunit. Together, these findings point to a balance between the IA and the activity of NR2B-containing NMDA receptors in the regulation of learning

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Epigenetic polypharmacology: from combination therapy to multitargeted drugs

    Get PDF
    The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed

    Update on the Combined Analysis of Muon Measurements from Nine Air Shower Experiments

    Get PDF
    Over the last two decades, various experiments have measured muon densities in extensive air showers over several orders of magnitude in primary energy. While some experiments observed differences in the muon densities between simulated and experimentally measured air showers, others reported no discrepancies. We will present an update of the meta-analysis of muon measurements from nine air shower experiments, covering shower energies between a few PeV and tens of EeV and muon threshold energies from a few 100 MeV to about 10GeV. In order to compare measurements from different experiments, their energy scale was cross-calibrated and the experimental data has been compared using a universal reference scale based on air shower simulations. Above 10 PeV, we find a muon excess with respect to simulations for all hadronic interaction models, which is increasing with shower energy. For EPOS-LHC and QGSJet-II.04 the significance of the slope of the increase is analyzed in detail under different assumptions of the individual experimental uncertainties

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    • 

    corecore