184 research outputs found

    The Bacillus anthracis arylamine N-acetyltransferase ((BACAN)NAT1) that inactivates sulfamethoxazole, reveals unusual structural features compared with the other NAT isoenzymes

    Get PDF
    AbstractArylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that biotransform arylamine drugs. The Bacillus anthracis (BACAN)NAT1 enzyme affords increased resistance to the antibiotic sulfamethoxazole through its acetylation. We report the structure of (BACAN)NAT1. Unexpectedly, endogenous coenzymeA was present in the active site. The structure suggests that, contrary to the other prokaryotic NATs, (BACAN)NAT1 possesses a 14-residue insertion equivalent to the ā€œmammalian insertionā€, a structural feature considered unique to mammalian NATs. Moreover, (BACAN)NAT1 structure shows marked differences in the mode of binding and location of coenzymeA when compared to the other NATs. This suggests that the mechanisms of cofactor recognition by NATs is more diverse than expected and supports the cofactor-binding site as being a unique subsite to target in drug design against bacterial NATs

    The crystal structure of Trz1, the long form RNase Z from yeast.

    Get PDF
    tRNAs are synthesized as precursor RNAs that have to undergo processing steps to become functional. Yeast Trz1 is a key endoribonuclease involved in the 3Ī„ maturation of tRNAs in all domains of life. It is a member of the Ī²-lactamase family of RNases, characterized by an HxHxDH sequence motif involved in coordination of catalytic Zn-ions. The RNase Z family consists of two subfamilies: the short (250-400 residues) and the long forms (about double in size). Short form RNase Z enzymes act as homodimers: one subunit embraces tRNA with a protruding arm, while the other provides the catalytic site. The long form is thought to contain two fused Ī²-lactamase domains within a single polypeptide. Only structures of short form RNase Z enzymes are known. Here we present the 3.1 ƅ crystal structure of the long-form Trz1 from Saccharomyces cerevisiae. Trz1 is organized into two Ī²-lactamase domains connected by a long linker. The N-terminal domain has lost its catalytic residues, but retains the long flexible arm that is important for tRNA binding, while it is the other way around in the C-terminal domain. Trz1 likely evolved from a duplication and fusion of the gene encoding the monomeric short form RNase Z

    Specific GFP-binding artificial proteins (Ā Rep): a new tool for in vitro to live cell applications

    Get PDF
    International audienceA family of artificial proteins, named Ī±Rep, based on a natural family of helical repeat was previously designed. Ī±Rep members are efficiently expressed, folded and extremely stable proteins. A large Ī±Rep library was constructed creating proteins with a randomized interaction surface. In the present study, we show that the Ī±Rep library is an efficient source of tailor-made specific proteins with direct applications in biochemistry and cell biology. From this library, we selected by phage display Ī±Rep binders with nanomolar dissociation constants against the GFP. The structures of two independent Ī±Rep binders in complex with the GFP target were solved by X-ray crystallography revealing two totally different binding modes. The affinity of the selected Ī±Reps for GFP proved sufficient for practically useful applications such as pull-down experiments. Ī±Reps are disulfide free proteins and are efficiently and functionally expressed in eukaryotic cells: GFP-specific Ī±Reps are clearly sequestrated by their cognate target protein addressed to various cell compartments. These results suggest that Ī±Rep proteins with tailor-made specificity can be selected and used in living cells to track, modulate or interfere with intracellular processes

    TbMP42 is a structure-sensitive ribonuclease that likely follows a metal ion catalysis mechanism

    Get PDF
    RNA editing in African trypanosomes is characterized by a uridylate-specific insertion and/or deletion reaction that generates functional mitochondrial transcripts. The process is catalyzed by a multi-enzyme complex, the editosome, which consists of approximately 20 proteins. While for some of the polypeptides a contribution to the editing reaction can be deduced from their domain structure, the involvement of other proteins remains elusive. TbMP42, is a component of the editosome that is characterized by two C2H2-type zinc-finger domains and a putative oligosaccharide/oligonucleotide-binding fold. Recombinant TbMP42 has been shown to possess endo/exoribonuclease activity in vitro; however, the protein lacks canonical nuclease motifs. Using a set of synthetic gRNA/pre-mRNA substrate RNAs, we demonstrate that TbMP42 acts as a topology-dependent ribonuclease that is sensitive to base stacking. We further show that the chelation of Zn2+ cations is inhibitory to the enzyme activity and that the chemical modification of amino acids known to coordinate Zn2+ inactivates rTbMP42. Together, the data are suggestive of a Zn2+-dependent metal ion catalysis mechanism for the ribonucleolytic activity of rTbMP42

    A survey of green plant tRNA 3'-end processing enzyme tRNase Zs, homologs of the candidate prostate cancer susceptibility protein ELAC2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>tRNase Z removes the 3'-trailer sequences from precursor tRNAs, which is an essential step preceding the addition of the CCA sequence. tRNase Z exists in the short (tRNase Z<sup>S</sup>) and long (tRNase Z<sup>L</sup>) forms. Based on the sequence characteristics, they can be divided into two major types: bacterial-type tRNase Z<sup>S </sup>and eukaryotic-type tRNase Z<sup>L</sup>, and one minor type, <it>Thermotoga maritima </it>(TM)-type tRNase Z<sup>S</sup>. The number of tRNase Zs is highly variable, with the largest number being identified experimentally in the flowering plant <it>Arabidopsis thaliana</it>. It is unknown whether multiple tRNase Zs found in <it>A. thaliana </it>is common to the plant kingdom. Also unknown is the extent of sequence and structural conservation among tRNase Zs from the plant kingdom.</p> <p>Results</p> <p>We report the identification and analysis of candidate tRNase Zs in 27 fully sequenced genomes of green plants, the great majority of which are flowering plants. It appears that green plants contain multiple distinct tRNase Zs predicted to reside in different subcellular compartments. Furthermore, while the bacterial-type tRNase Z<sup>S</sup>s are present only in basal land plants and green algae, the TM-type tRNase Z<sup>S</sup>s are widespread in green plants. The protein sequences of the TM-type tRNase Z<sup>S</sup>s identified in green plants are similar to those of the bacterial-type tRNase Z<sup>S</sup>s but have distinct features, including the TM-type flexible arm, the variant catalytic HEAT and HST motifs, and a lack of the PxKxRN motif involved in CCA anti-determination (inhibition of tRNase Z activity by CCA), which prevents tRNase Z cleavage of mature tRNAs. Examination of flowering plant chloroplast tRNA genes reveals that many of these genes encode partial CCA sequences. Based on our results and previous studies, we predict that the plant TM-type tRNase Z<sup>S</sup>s may not recognize the CCA sequence as an anti-determinant.</p> <p>Conclusions</p> <p>Our findings substantially expand the current repertoire of the TM-type tRNase Z<sup>S</sup>s and hint at the possibility that these proteins may have been selected for their ability to process chloroplast pre-tRNAs with whole or partial CCA sequences. Our results also support the coevolution of tRNase Zs and tRNA 3'-trailer sequences in plants.</p

    Impact of RNA degradation on gene expression profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression profiling is a highly sensitive technique which is used for profiling tumor samples for medical prognosis. RNA quality and degradation influence the analysis results of gene expression profiles. The impact of this influence on the profiles and its medical impact is not fully understood. As patient samples are very valuable for clinical studies, it is necessary to establish criteria for the RNA quality to be able to use these samples in later analysis.</p> <p>Methods</p> <p>To investigate the effects of RNA integrity on gene expression profiling, whole genome expression arrays were used. We used tumor biopsies from patients diagnosed with locally advanced rectal cancer. To simulate degradation, the isolated total RNA of all patients was subjected to heat-induced degradation in a time-dependent manner. Expression profiling was then performed and data were analyzed bioinformatically to assess the differences.</p> <p>Results</p> <p>The differences introduced by RNA degradation were largely outweighed by the biological differences between the patients. Only a relatively small number of probes (275 out of 41,000) show a significant effect due to degradation. The genes that show the strongest effect due to RNA degradation were, especially, those with short mRNAs and probe positions near the 5' end.</p> <p>Conclusions</p> <p>Degraded RNA from tumor samples (RIN > 5) can still be used to perform gene expression analysis. A much higher biological variance between patients is observed compared to the effect that is imposed by degradation of RNA. Nevertheless there are genes, very short ones and those with the probe binding side close to the 5' end that should be excluded from gene expression analysis when working with degraded RNA. These results are limited to the Agilent 44 k microarray platform and should be carefully interpreted when transferring to other settings.</p

    A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation

    Get PDF
    Bioinformatic analysis of the intergenic regions of Staphylococcus aureus predicted multiple regulatory regions. From this analysis, we characterized 11 novel noncoding RNAs (RsaAā€K) that are expressed in several S. aureus strains under different experimental conditions. Many of them accumulate in the late-exponential phase of growth. All ncRNAs are stable and their expression is Hfq-independent. The transcription of several of them is regulated by the alternative sigma B factor (RsaA, D and F) while the expression of RsaE is agrA-dependent. Six of these ncRNAs are specific to S. aureus, four are conserved in other Staphylococci, and RsaE is also present in Bacillaceae. Transcriptomic and proteomic analysis indicated that RsaE regulates the synthesis of proteins involved in various metabolic pathways. Phylogenetic analysis combined with RNA structure probing, searches for RsaEā€mRNA base pairing, and toeprinting assays indicate that a conserved and unpaired UCCC sequence motif of RsaE binds to target mRNAs and prevents the formation of the ribosomal initiation complex. This study unexpectedly shows that most of the novel ncRNAs carry the conserved Cāˆ’rich motif, suggesting that they are members of a class of ncRNAs that target mRNAs by a shared mechanism

    Expression, maturation and turnover of DrrS, an unusually stable, DosR regulated small RNA in Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis depends on the ability to adjust to stresses encountered in a range of host environments, adjustments that require significant changes in gene expression. Small RNAs (sRNAs) play an important role as post-transcriptional regulators of prokaryotic gene expression, where they are associated with stress responses and, in the case of pathogens, adaptation to the host environment. In spite of this, the understanding of M. tuberculosis RNA biology remains limited. Here we have used a DosR-associated sRNA as an example to investigate multiple aspects of mycobacterial RNA biology that are likely to apply to other M. tuberculosis sRNAs and mRNAs. We have found that accumulation of this particular sRNA is slow but robust as cells enter stationary phase. Using reporter gene assays, we find that the sRNA core promoter is activated by DosR, and we have renamed the sRNA DrrS for DosR Regulated sRNA. Moreover, we show that DrrS is transcribed as a longer precursor, DrrS+, which is rapidly processed to the mature and highly stable DrrS. We characterise, for the first time in mycobacteria, an RNA structural determinant involved in this extraordinary stability and we show how the addition of a few nucleotides can lead to acute destabilisation. Finally, we show how this RNA element can enhance expression of a heterologous gene. Thus, the element, as well as its destabilising derivatives may be employed to post-transcriptionally regulate gene expression in mycobacteria in combination with different promoter variants. Moreover, our findings will facilitate further investigations into the severely understudied topic of mycobacterial RNA biology and into the role that regulatory RNA plays in M. tuberculosis pathogenesis

    Catalytic Properties of RNase BN/RNase Z from Escherichia coli: RNase BN IS BOTH AN EXO- AND ENDORIBONUCLEASE*

    No full text
    Processing of the 3ā€² terminus of tRNA in many organisms is carried out by an endoribonuclease termed RNase Z or 3ā€²-tRNase, which cleaves after the discriminator nucleotide to allow addition of the universal -CCA sequence. In some eubacteria, such as Escherichia coli, the -CCA sequence is encoded in all known tRNA genes. Nevertheless, an RNase Z homologue (RNase BN) is still present, even though its action is not needed for tRNA maturation. To help identify which RNA molecules might be potential substrates for RNase BN, we carried out a detailed examination of its specificity and catalytic potential using a variety of synthetic substrates. We show here that RNase BN is active on both double- and single-stranded RNA but that duplex RNA is preferred. The enzyme displays a profound base specificity, showing no activity on runs of C residues. RNase BN is strongly inhibited by the presence of a 3ā€²-CCA sequence or a 3ā€²-phosphoryl group. Digestion by RNase BN leads to 3-mers as the limit products, but the rate slows on molecules shorter than 10 nucleotides in length. Most interestingly, RNase BN acts as a distributive exoribonuclease on some substrates, releasing mononucleotides and a ladder of digestion products. However, RNase BN also cleaves endonucleolytically, releasing 3ā€² fragments as short as 4 nucleotides. Although the presence of a 3ā€²-phosphoryl group abolishes exoribonuclease action, it has no effect on the endoribonucleolytic cleavages. These data suggest that RNase BN may differ from other members of the RNase Z family, and they provide important information to be considered in identifying a physiological role for this enzyme
    • ā€¦
    corecore