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Abstract

Mycobacterium tuberculosis depends on the ability to adjust to stresses encountered in a

range of host environments, adjustments that require significant changes in gene expres-

sion. Small RNAs (sRNAs) play an important role as post-transcriptional regulators of pro-

karyotic gene expression, where they are associated with stress responses and, in the case

of pathogens, adaptation to the host environment. In spite of this, the understanding of M.

tuberculosis RNA biology remains limited. Here we have used a DosR-associated sRNA as

an example to investigate multiple aspects of mycobacterial RNA biology that are likely to

apply to other M. tuberculosis sRNAs and mRNAs. We have found that accumulation of this

particular sRNA is slow but robust as cells enter stationary phase. Using reporter gene

assays, we find that the sRNA core promoter is activated by DosR, and we have renamed

the sRNA DrrS for DosR Regulated sRNA. Moreover, we show that DrrS is transcribed as a

longer precursor, DrrS+, which is rapidly processed to the mature and highly stable DrrS.

We characterise, for the first time in mycobacteria, an RNA structural determinant involved

in this extraordinary stability and we show how the addition of a few nucleotides can lead

to acute destabilisation. Finally, we show how this RNA element can enhance expression

of a heterologous gene. Thus, the element, as well as its destabilising derivatives may be

employed to post-transcriptionally regulate gene expression in mycobacteria in combination

with different promoter variants. Moreover, our findings will facilitate further investigations

into the severely understudied topic of mycobacterial RNA biology and into the role that reg-

ulatory RNA plays in M. tuberculosis pathogenesis.

Introduction

In spite of significant endeavours in both drug discovery and vaccine development, tuberculo-

sis (TB), caused by Mycobacterium tuberculosis, remains a global threat to human health. Drug

treatment is lengthy and complex often with severe side effects, especially for patients with

multidrug resistant TB (MDR-TB) and extensively drug resistant TB (XDR-TB). MDR-TB

accounted for an estimated 480 000 incidents in 2014, with almost 10% of those being

XDR-TB [1]. Moreover, the Mycobacterium bovis BCG vaccine does not always offer the
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desired or even expected protection, and in most cases protection only lasts a decade or two

[2]. It is therefore essential that we investigate all aspects of M. tuberculosis gene regulation in

order to understand the host-pathogen interactions important for establishing and maintain-

ing infection. A substantial volume of literature describes stress induced transcriptional

changes in the M. tuberculosis gene expression program [3–6]. Less well-known are the post-

transcriptional changes mediated by regulatory RNAs such as riboswitches and small regula-

tory RNAs (sRNAs).

sRNAs are widely acknowledged as increasingly important players in pathogen gene regula-

tion, where they support and complement the more well-characterised, protein-based gene

regulation, in most cases by modulating mRNA stability, reviewed in [7–9]. Many sRNAs are

associated with stress responses, adaptation to changing (host) environments and modulation

of cell surface components or secreted proteins affecting the host-pathogen interfaces, e.g. [10,

11]. Recently, this has also been shown to be the case in M. tuberculosis where the missing link

between the PhoPR two-component system and the aberrant secretion of TAT-dependent

proteins turned out to be the Mcr7 sRNA [12]. However, in spite of several publications

describing the identification of novel, putative regulatory RNAs in M. tuberculosis e.g. [13–18],

little is known about their expression, turnover and targets.

The level of any given transcript reflects a balance between synthesis and turnover, and

RNA is degraded by a range of endo- and exonucleases with different specificities. While M.

tuberculosis, and its non-pathogenic relative, Mycobacterium smegmatis, share some RNases

with model organisms such as Escherichia coli and Bacillus subtilis, there are significant dif-

ferences in the complement of major RNases associated with mRNA turnover. Thus, mycobac-

teria contain functional homologues of both RNase E and RNase J, while RNase E is absent

from B. subtilis and RNase J is absent from E. coli (Table 1), [19–21]. Mycobacterial RNase J

(Rv2752c/MSMEG_2685) has dual endo- and exonuclease activities and is capable of en-

donucleolytic cleavage very close to the 5’ end [20]. Curiously, in spite of the difference in

GC content between these organisms (Table 1), the substrate specificity of the mycobacterial

RNase E differs only slightly from that of E. coli RNase E, displaying a preference for A/U-

rich sequences [22, 23]. The substrate specificity of mycobacterial RNase J is not known, but it

is also believed to be A/U-rich sequences similar to RNase E and to B. subtilis RNase J1 [20,

24]. The endonucleolytic activity of E. coli RNase E as well as the exonucleolytic activity of B.

subtilis RNase J are both sensitive to the phosphorylation state of the 5’ nucleotide of their sub-

strates, i.e. they both have a strong preference for mono-phosphorylated over tri-phosphory-

lated transcripts as substrates due to the presence of specific ‘monophosphate binding pockets’

in these enzymes [25–28]. RNA 5’ monophosphates can be generated either by endonucleo-

lytic cleavage of a transcript or by the removal of a pyrophosphate group from the 5’ nucleotide

by the action of the Nudix hydrolase, RppH (RNA pyrophosphohydrolase) [29]. Either way,

the monophosphate ‘tags’ the transcript for further, rapid degradation by RNase E or RNase J.

So far, there are no reports of RppH homologues in mycobacteria. To fully understand regula-

tion of gene expression in M. tuberculosis, it is therefore essential to experimentally determine

how RNA may be stabilised or degraded in this pathogen.

Table 1. Species specific occurrence of nucleases relevant for this study.

Species RNase E RNase J RppH GC content

E. coli yes no yes 51%

B. subtilis no yes yes 44%

M. tuberculosis yes yes ? 66%

M. smegmatis yes yes ? 67%

https://doi.org/10.1371/journal.pone.0174079.t001
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We are interested in riboregulation associated with stress responses in M. tuberculosis. One

of these is the DosR response, which is induced by a number of infection-associated stresses

including hypoxia and NO stress, and it leads to the expression of more than 50 genes involved

in adaptation to hypoxic conditions [3, 30]. The DosR regulon is also induced when cells enter

stationary phase, but to a lesser extent [13, 31]. DosR is the response regulator of the two-com-

ponent system DosRS (or DosRT), and it binds cooperatively to multiple DosR binding sites of

which the primary (promoter proximal) site overlaps with the -35 region of DosR regulated

promoters [32]. The M. tuberculosis sRNA, MTS1338 (or ncRv11733 according to a more

recent annotation [33]) was first identified by RNA sequencing (RNA-seq) and its accumula-

tion in stationary phase is highly dependent on DosR [13].

Here we characterise in detail the expression, processing and turnover of MTS1338 to

obtain insights into the RNA biology of this major pathogen. We have investigated the expres-

sion pattern of MTS1338 under different growth conditions and by employing reporter gene

assays, and we provide evidence that the mature sRNA is generated by 3’ processing of a longer

nascent transcript. Moreover, we show that the mature MTS1338 has an unexpectedly long

half-life of several hours, and we show that this stability can be perturbed by changing the 5’

structure of MTS1338. Based on our results we propose that the MTS1338 5’ stem-loop makes

the sRNA inert to the action of an as yet unidentified mycobacterial RppH homologue, which

otherwise initiates RNA turnover by changing the phosphorylation state of the 5’ nucleotide to

make it susceptible to the action of RNases E and J. The M. tuberculosis structural determinants

and the pattern of RNA processing identified here are likely to pertain to a plethora of M.

tuberculosis coding as well as non-coding RNAs, thus paving the way for further exploration of

M. tuberculosis RNA biology. Moreover, our findings can be applied to the engineered expres-

sion of M. tuberculosis genes in order to adjust expression levels for synthetic and/or systems

biology studies or for vaccine development for an optimized immune response.

Results

Expression of a DosR-regulated M. tuberculosis sRNA

The DosR regulon of M. tuberculosis has been intensely studied for more than a decade, but its

role in persistence and pathogenesis remained inconclusive until recently, when Mehra et al.

published evidence for the inability of a dosR knockout strain (ΔdosR) to cause disease [34].

However, many of the DosR regulon members remain uncharacterised, and among those is

the sRNA MTS1338, which was identified by RNA-seq [13]. This sRNA accumulates to high

levels in stationary phase and further during chronic mouse infection. In addition, by using a

ΔdosR strain we demonstrated that the accumulation of MTS1338 was dependent on DosR

[13], a key mycobacterial regulator. We have therefore renamed the sRNA ‘DrrS’ for DosR

Regulated sRNA.

Preliminary analysis has suggested significant changes in gene expression mediated by

DrrS. However, an important issue for any regulator is to ensure that regulation occurs at the

right time and place. Therefore, before characterising the DrrS regulon, we wanted to charac-

terise the expression and turnover of the regulator itself, specifically in order to obtain a more

comprehensive picture of its role in regulating the expression of other genes, and more gener-

ally to gain more insight into mycobacterial RNA biology as a whole.

First, we investigated the accumulation of DrrS as the cells progressed from exponential

growth to late stationary phase (two weeks post log phase). Cultures of M. tuberculosis were

grown to mid-log phase (Day 0, OD600 = 0.6), total RNA was harvested on days 0, 1, 2, 3, 6 and

13 and DrrS expression was measured by Northern blotting. Since we had previously observed

that the accumulation of DrrS was DosR dependent, we performed the same time course
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experiment with the ΔdosR strain [3]. The results, shown in Fig 1A, demonstrate that in

H37Rv DrrS accumulated slowly but to high levels as the cells progress into late stationary

phase. As expected, the increase in DrrS levels was significantly slower in the ΔdosR strain,

confirming that the accumulation of DrrS is highly dependent on DosR. In addition to the

main signal, we also observed a series of faint bands corresponding to larger transcripts in

wildtype RNA at day 0 and day 1. Visualising the 5S loading control along with DrrS con-

firmed that DrrS is slightly smaller than 5S, i.e. approximately 110 nucleotides (Fig 1A). More-

over, we also established that DrrS accumulation continued at least three weeks after log-phase

(S1 Fig).

Nitric oxide dependent expression of DrrS

As the accumulation of DrrS in stationary phase is DosR dependent, we investigated DrrS

expression and accumulation under a condition known to induce DosR, namely Nitric Oxide

(NO) [35]. Cultures of M. tuberculosis were grown in standard 7H9 medium to mid-log phase

(OD600 = 0.6) and DETA-NO was added at final concentration of 0.1 and 1.0 mM, respec-

tively. The cultures were harvested after two hours of NO stress and total RNA was analysed

by Northern blotting. As seen in Fig 1B, the addition of DETA-NO led to a dose-dependent

induction of DrrS, which was much more rapid than the slow accumulation seen in stationary

phase.

Fig 1. Accumulation of DrrS. A: Comparison of DrrS accumulation between H37Rv and ΔdosR over two

weeks shown by Northern blotting. Total RNA (5 μg) from the two strains was separated on a single 8%

denaturing acrylamide gel and probed for DrrS. The 5S loading control also shows trace amounts of DrrS,

particularly in H37Rv, demonstrating that DrrS is slightly smaller than 5S. OD600 measurements after day 3

were unreliable due to clumping. B: Induction of DrrS expression with DETA-NO. Cells were grown to mid-log

phase and exposed to 0.1 mM and 1.0 mM DETA-NO for two hours, respectively. RNA was analysed by

Northern blotting.

https://doi.org/10.1371/journal.pone.0174079.g001
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Other stressors such as hydrogen peroxide (oxidative stress), Mitomycin C (DNA damage)

and low pH did not result in DrrS induction (not shown), implying that the NO response was

highly specific, and corroborating the link to DosR.

To further address the role of DosR, we investigated the M. tuberculosis DrrS promoter

region in more detail. DrrS has two transcription start sites (TSS): a weak one at T1960601

(here referred to as TSS1 expressed from P1) and a strong one at A1960667, (referred to as

TSS2, expressed from P2, Fig 2) [13]. A single DosR binding site (DBS), [36] was identified 34

basepairs upstream of TSS2, i.e. overlapping with the -35 region [13], which makes this pro-

moter similar to class II CRP dependent promoters from E. coli [37]. The distance between the

TSS and the DBS is in good agreement with the published canonical distance between DosR

associated TSSs and their proximal DBS, suggesting that the DosR dependent transcript is

expressed from P2, although a second, distal DBS seems to be missing. As DosR reportedly

acts on SigA dependent promoters [38], we identified two AT-rich hexamers (TATTGG and

AGTATT), which both deviate slightly from the SigA -10 consensus sequences identified by

Cortes (TANNNT) [39] and Shell (A/T ANNNT) [40], upstream of TSS2 (Fig 2). Only one of

these (AGTATT) appeared to have the correct spacing to the TSS, suggesting that this is the

more likely candidate. In support of this notion we found that several other DosR regulated

genes have a similar -10 region (Table 2). As several DosR regulated genes appear to have

SigC recognition motifs in addition to SigA motifs [41–43], we scrutinised the region for

alternative sigma factor binding sites, but did not find any obvious matches to known con-

sensus sequences [44]. It has been proposed that a minimum of two closely spaced DBS is

required for DosR-activated expression [32]. We therefore interrogated the region immedi-

ately upstream of the known DBS and identified a sequence that had weak homology to the

consensus sequence of both primary and secondary DBS (Fig 2) [32]. Hence, we speculated

that this region could possibly serve as a weak or cryptic, secondary binding site capable of

supporting the promoter proximal binding site.

Reporter gene analysis of DrrS expression

To establish the contribution of the DBS to the DosR-dependent expression of DrrS, we made

genomically integrating promoter-lacZ reporter gene fusions extending upstream from TSS2.

A ‘minimal’ construct included the core promoter only, i.e. excluding the DBS, 35 basepairs

upstream of TSS2 (‘core’, Fig 2). The second ‘full-length’ construct included core promoter

and upstream region with the known DBS as well as the hypothetical additional DBS, in total

Fig 2. DrrS and its promoter region . Transcription start sites (TSS) are indicated with red asterisks, putative -10 boxes for TSS2 are

shown in green; previously identified DosR binding site (DBS) is shown as a black box, while a putative DBS is shown as a black dashed

box. Regions cloned as lacZ fusions are shown as blue arrows above the promoter sequence. Red lines indicate ATCCT repeats in 3’ region

(see text).

https://doi.org/10.1371/journal.pone.0174079.g002
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75 basepairs upstream of TSS2 (‘DBS’, Fig 2). The constructs were transformed into Mycobac-
terium bovis BCG, which encodes DrrS, RNA polymerase and DosRS proteins identical to

those of M. tuberculosis. ß-galactosidase activity was measured one week after OD600 reached

1.0, where DrrS levels are high similar to M. tuberculosis (data not shown). For comparison, we

also measured the ß-galactosidase activity of the core promoter construct in exponential phase

and in each case the values for the empty vector control have been subtracted. The results

showed that the activity of the minimal promoter construct increased 1.6-fold between expo-

nential and stationary phase. In stationary phase, the full-length promoter construct had the

same activity as the core construct, which implies that the upstream DBS-containing region

did not confer any further activation (Fig 3A). This suggests that DosR-dependent accumula-

tion of DrrS is not dependent on the canonical DosR-mediated mechanism of activation of

transcription. To shed more light on these results and on the role of DosR in DrrS transcrip-

tion, we cloned the M. tuberculosis dosR gene (dosRtb) into the same integrating vector as the

reporters, but divergently transcribed from a strong, heterologous promoter that is active in

exponential phase, where native dosR expression is minimal. The heterologous over-expression

implies that the expressed DosRtb will be present in larger amounts in the cell than under

Table 2. Sequences of -10 regions in selected DosR regulated genes.

Gene Transcription Start Site (TSS) -10 region

DrrS 1960667 gccAGTATTggtgata

Rv0079 88166 gccAGACAAgctttggg

Rv0574c 668453 ccgATCGTAtgacgtg

Rv1733c 1960476 gcgATGATCccaca

Rv1737c (narK2) 1965427 gccAGGGTTagcgca

Rv2032 2279105 ttcAGAAAGatcgggg

Rv2629 2955519 cacAACGATcgaagg

Transcription start sites (TSS) taken from [39]. Sequences in upper case shows putative -10 boxes, bold letter last in each sequence corresponds to the

mapped TSS. A shared GCCAG motif in the promoters of DrrS, Rv0079 and Rv1737c has been underlined.

https://doi.org/10.1371/journal.pone.0174079.t002

Fig 3. DrrS promoter activity. A: ß-galactosidase assays of DrrS promoter-reporter fusions containing either core or ‘full-length’ promoter,

including DBS (Fig 2) were transformed into M. bovis BCG. Stationary phase cultures (Sta) were grown one week past OD600 = 1.0 before

harvest and ß-galactosidase assays performed on cell extracts. Results represent mean ± standard deviation of three biological replicates

normalised to total protein and values for empty vector subtracted; p<0.05. B: ß-galactosidase assays of DrrS promoter-reporter fusions

expressed in M. smegmatis mc2155 or C: ΔdosRsm [45] with and without dosRtb. The assays were performed on exponential phase cultures

and the Results represent mean ± standard deviation of three biological replicates normalised to total protein and values for empty vector

subtracted; p<0.05.

https://doi.org/10.1371/journal.pone.0174079.g003
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native conditions, but mostly in its un-phosphorylated state, which has reduced affinity for

DNA [41]. The constructs were transformed into Mycobacterium smegmatis, which is widely

acknowledged as a tractable surrogate host for M. tuberculosis gene expression. As back-

ground, we chose two strains; the wildtype strain mc2155 and a derivative, ΔdosRsm, in which

the M. smegmatis dosR gene had been deleted [45] (gift from Huw Williams). The reporter

strains were grown to mid-log phase and cell extracts were assayed for ß-galactosidase activity

with values for empty vector control subtracted. The results indicated that in the wildtype

mc2155 background, in the absence of dosRtb both the minimal and the full-length promoter

constructs had very low and very similar promoter activities, i.e. 21 and 17 Miller units/mg

protein, respectively (Fig 3B). This result shows that, during exponential growth the activity of

the DrrS core promoter is at least two-fold lower in M. smegmatis than in M. bovis BCG. When

the constitutively over-expressed dosRtb was included in the vector, both minimal and full

length promoter activities were dramatically and significantly increased to 277 and 92 Miller

units/mg protein for core and DBS constructs, respectively (Fig 3B). In other words, the mini-

mal core promoter had higher activity than the full-length promoter including the upstream

DBS region. Using the ΔdosRsm strain as background for the same reporter constructs resulted

in a similar pattern; i.e. the activities of both minimal and full length promoters core and DBS

were low, in this case between 21 and 23 Miller units/mg protein. The over-expression of

dosRtb led to the activation of both promoters, and similarly to the wildtype background, the

full-length promoter was activated significantly less than the core promoter (Fig 3C). In this

case, the absolute ß-galactosidase activities of the reporters were approximately two-fold

higher than the identical constructs in the wildtype background, suggesting that DosRtb activa-

tion of the DrrS promoter is higher in the absence of the native DosRsm. It should be noted

that DosRtb also activated the empty vector control (to 43±7.4 and 50±4.6 Miller units/mg pro-

tein for mc2155 and ΔdosRsm, respectively), although these values were subtracted from the

final, normalised results. All the normalised values including fold increase for each construct

have been collated in Table 3.

Mapping of the DrrS 3’ end

As scrutiny of the 3’ region of DrrS did not reveal an obvious canonical intrinsic terminator

structure or termination sites, we performed 3’ RACE on DrrS. Total RNA from M. tuberculo-
sis was poly-A tailed and 3’ RACE carried out as previously described [14] using a primer that

extended from U40 relative to TSS2 (genome position T1960706). The results showed that in

72% (23 of 32) of the sequenced clones, the 3’ end of DrrS was mapped to U108 relative to

TSS2 (genome position T1960774), i.e. the 2nd T (U) residue within the repeat sequence

Table 3. β-gal activity of DrrS promoter constructs assayed in M. smegmatis.

strain/reporter ± DosRtb ß-gal activity fold increase*

mc2155/core 21±1.45 -

mc2155/DBS 16.8±0.71 -

mc2155/core + DosRtb 277±64 13

mc2155/DBS + DosRtb 91.6±6.2 5

ΔdosRsm /core 21±2.4 -

ΔdosRsm /DBS 23±2.2 -

ΔdosRsm /core + DosRtb 601±102 29

ΔdosRsm /DBS + DosRtb 191±15 8

* Increase in activity conferred by expression of DosRtb from same vector as the reporter

https://doi.org/10.1371/journal.pone.0174079.t003
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ATCCTcatcct, where lower case letters refer to the DNA sequence downstream of the DrrS 3’

end (see also Fig 2). The resulting sRNA, when expressed from P1 would therefore be 174

nucleotides long, while the one expressed from the P2 would be 108 nucleotides long, the latter

in accordance with the size observed by Northern blotting. The majority of the remaining

RACE clones (i.e. 8 out of 9; 25% of total) had one additional cytosine residue at the 3’ end

(ATCCTCatcct), thereby giving rise to a subpopulation of DrrS transcripts that were 109

nucleotides in length.

DrrS is processed from a longer transcript

The structure of the 109-nucleotide DrrS was predicted using mfold [46]. According to this

prediction the structure of DrrS begins with a short, 5-basepair, GC-rich stem-loop and fin-

ishes with a long imperfect stem and a short CU (108 nucleotide) and CUC (109 nucleotide)

tail at its 3’ end (Fig 4). The complete lack of a 3’ poly-U tract makes this structure incompati-

ble with a function as intrinsic terminator, even in M. tuberculosis [47]. In order to shed more

light on DrrS 3’ end formation, we created recombinant DrrS variants in which the template

DNA had modified 3’ regions. These variants were expressed from the rrnB promoter of M.

smegmatis [48] and included the native DrrS TSS. At the 3’ end they contained either one,

two or three of the ATCCT repeats identified in the 3’ region of DrrS (ATCCT1, ATCCT2,

ATCCT3) followed by a short XhoI linker and the strong synthetic SynB terminator [47], to

ensure efficient termination (methods for details). The DrrS 3’ variants were expressed in the

fast-growing and more tractable M. smegmatis, which harbours the same complement of

RNases as M. tuberculosis, and which does not encode a DrrS homologue. Total RNA was iso-

lated from each strain and the 3’ ends mapped using RACE as described above. The results are

shown schematically in Fig 5. The top panel illustrates how the native DrrS 3’ termini fall

mainly on U108 and to a lesser extent C109 in M. tuberculosis. The second panel shows that

the heterologous expression of DrrS from the template with two ATCCT repeats (i.e. similar to

wildtype DrrS) in M. smegmatis, mirrors the DrrS 3’ end formation in M. tuberculosis. Thus, in

M. tuberculosis 97% of 3’ ends fall on U108 or C109 compared to 94% in M. smegmatis. How-

ever, when a third ATCCT repeat was added to the template DNA, we observed a shift in the

RNA termini downstream of C109 (Fig 5, panel 3). Similarly, when we removed a repeat, in

effect changing the DNA sequence downstream of the native 3’ end, we also observed several

transcripts with 3’ additions. The collated results are shown in S1 Table, and together they sug-

gest that the DrrS 3’ CU(C) tail is not generated by termination of transcription but rather by

processing of a longer transcript, which we will refer to as DrrS+.

Mapping of DrrS+ 3’ termini

As the DrrS time course experiment (Fig 1) had indicated the presence of larger DrrS+ tran-

scripts during early stationary phase but not at later time points, we investigated the accumula-

tion of DrrS+ from log phase into stationary phase in H37Rv and ΔdosR, similar to what had

been done for DrrS. RNA from the same time course was probed, but this time with a DrrS

+ probe complementary to a region downstream of C109 to specifically identify DrrS+. The

results demonstrate that a series of transcripts between ~160 and ~400 nucleotides were recog-

nised by the DrrS+ probe (Fig 6A) with particularly strong signals at day 0 (log-phase) and day

1 (early stationary phase). These time points were dominated by a signal just below 300 nucleo-

tides, while further into stationary phase a signal of ~160 nucleotides dominated (Fig 6A). A

similar pattern was observed in the ΔdosR strain, but again with much weaker intensity, and

the shift from the larger (~300 nucleotides) to the smaller (~160 nucleotides) transcript is

more obvious in this strain, possibly due to the reduced background signals. To ensure that

Characterisation of a DosR regulated small RNA in M. tuberculosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0174079 March 21, 2017 8 / 27

https://doi.org/10.1371/journal.pone.0174079


this signal was in fact associated with DrrS/DrrS+ we probed RNA from a ΔdrrS strain (har-

vested at OD600 = 1.5), from which we observed no signal (Fig 6B), verifying that the transcripts

were indeed encoded by the DrrS gene. The presence of several bands up to ~400 nucleotides

suggests that either termination of transcription is imprecise or the nascent DrrS+ is>400

nucleotides in length and all of the observed signals arise from processing, or both.

In order to further elucidate DrrS 3’ end generation we performed additional 3’ RACE with

primers that extended from C119 and C135 of DrrS+, respectively. The results, shown in S2

Table indicate the presence of several different 3’ termini, which is also reflected in the multi-

ple signals seen on the Northern blots in Fig 6. More specifically, the results also indicate that

Fig 4. Predicted structure of the 109 nucleotide DrrS. The 109 nucleotide DrrS sequence from TSS2 to

the mapped CU(C) 3’ end was used to predict the structure in mfold.

https://doi.org/10.1371/journal.pone.0174079.g004
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Fig 5. Mapping of 3’ termini of DrrS variants. The panels illustrate how the DrrS 3’ termini vary as the 3’

region is modified. The top panel shows the 3’ RACE results of wildtype DrrS sequence with two ATCCTC
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some 3’ positions were represented by more than one clone (C125, C135, C140, C162, C164),

while others were represented only once. C164 was represented by 5 of the 36 clones (14%)

and is likely to correspond to the prominent signal seen around 160 nucleotides on the North-

ern blot (indicated by arrow in Fig 6A), and similar in size to what has been reported recently

by Wang et al. [49]. The prominent signal just below 300 nucleotides could correspond to the

3’ termini mapped to 271 and 273. It is worth noting that the ten most stable of the predicted

folds of the 273-nucleotide long DrrS+ all include a 5’ structure that is identical to the mature

108 nucleotide DrrS, suggesting that this stem-loop structure is likely to form regardless of the

heterogeneity of the 3’ tail (Fig 4).

More than half of all the mapped 3’ termini (19 of 36) fell between a G and a C residue, and

12 of these (33%) were within the sequence GC|GC. This led us to align all of the mapped 3’

termini from C122 to U297 in the context of four nucleotides on either side using WebLogo

[50]. The resulting consensus, shown in Fig 7, strongly suggest sequence specific cleavage

between C and G within the sequence GC|G with a striking underrepresentation of A, and to

some extent U residues in the 8-nucleotide context shown, thereby making it unlikely that

these termini are generated by RNase E or RNase J, which have a preference for U- and A/U-

rich substrates, respectively. The DrrS+ sequence was interrogated for putative ORFs and we

found two; a small one covering positions A50 to U142 and a large one covering positions G15

to A368, relative to TSS2 of DrrS. The latter has been annotated as the hypothetical MT1775 in

CDC1551 [51]. Both were tested for translation by fusing these in frame to a lacZ reporter, but

neither resulted in expression of the reporter (not shown)

repeats, which in M. tuberculosis leads to the majority of transcripts ending in U or C within the first repeat

(indicated with red, vertical lines). Panels 2–4 show the results of DrrS variants expressed in M. smegmatis;

panel 2 represents 3’ RACE results of DrrS cloned with two ATCCTC repeats before the SynB terminator,

similar to wildtype DrrS; panel 3 shows the results when an extra repeat has been inserted, and panel 4 the

results when only one repeat is included.

https://doi.org/10.1371/journal.pone.0174079.g005

Fig 6. Growth phase dependent accumulation of DrrS+. A: Time course of expression from log- to stationary phase (as in Fig 1), but

with more RNA and probed with the DrrS+ probe complementary to RNA downstream of position C109. Arrow indicates prominent

transcript around 160 nucleotides described in the text. B: total RNA from M. tuberculosis H37Rv and M. tuberculosis ΔdrrS also probed

for DrrS+ showing a range of transcripts similar to A in H37Rv but no detectable transcripts in ΔdrrS. Marker: Century marker (Ambion).

https://doi.org/10.1371/journal.pone.0174079.g006
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Stability of DrrS

Since the DrrS promoter was shown to be relatively weak and therefore activation of transcrip-

tion alone was unlikely to account for the significant accumulation of DrrS we observe in sta-

tionary phase (Fig 1), and since the amount of any transcript reflects the balance between its

synthesis and its turnover, we decided to investigate the stability of DrrS. We made use of the

fact that DrrS is expressed at very low levels during exponential growth, i.e. on average < 1

copy per 10 cells [7, 13]. By diluting a stationary phase culture of M. tuberculosis, where DrrS is

present in high amounts into fresh medium to an OD600 ~ 0.4, where DrrS is normally present

in low amounts, we should only detect DrrS transcripts that were synthesised before the dilu-

tion, as DrrS is expressed at very low levels at this stage of growth. For comparison, the dilution

was done both in the presence and absence of 200 μg/ml rifampicin. Samples for RNA extrac-

tion were removed at times 0, 1, 3, 6, 25 and 50 hours after dilution, and DrrS levels were ana-

lysed by Northern blotting. The results shown in Fig 8 demonstrate that both in the presence

and absence of rifampicin, DrrS disappears very slowly over time with a significant amount

remaining 6 hours after dilution, suggesting that DrrS is extremely stable under these condi-

tions. The fact that the addition of rifampicin had little effect on the disappearance of the DrrS

signal, suggests that de novo RNA synthesis did not significantly influence the levels of DrrS

during exponential growth. To assess if DrrS turnover was different during stationary phase,

where DrrS is more abundant, we added rifampicin to a stationary phase culture and sampled

RNA over 50 hours. Northern blotting revealed that the stability of DrrS was also considerable

in stationary phase (S2 Fig). Finally, we also tested if DosR had an effect on stationary phase

stability of DrrS by performing the stability experiment in the ΔdosR background. The result,

shown in S2 Fig indicate that the stability of DrrS is largely the same in the two strains, suggest-

ing that DosR does not alter the stability to DrrS.

To establish if this level of stability was a general feature of M. tuberculosis sRNAs, we re-

probed the membranes for the MTS2823 sRNA, which is the most abundant non-ribosomal

sRNA in stationary phase cells [13]. The result, shown in Fig 8C and 8D, indicates that the

MTS2823 signal is significantly reduced after three hours particularly in the presence of rifam-

picin, suggesting that MTS2823 has a significantly shorter half-life than DrrS during exponen-

tial growth. However, both sRNAs still have a substantially longer half-life than that of the

most stable M. tuberculosis mRNA (Rv2886c), which is 18.5 minutes [52]; in the same study

the average mRNA half-life was found to be less than 10 minutes.

In summary, our results demonstrate that DrrS is unusually stable and keeping in mind

that transcriptional activation of DrrS expression was limited, we conclude that this stability

plays a major role in the accumulation of DrrS in stationary phase.

Fig 7. Alignment of DrrS 3’ termini in WebLogo. All the 3’ termini obtained with extended 3’ RACE (i.e.

beyond C109) were aligned in WebLogo, which resulted in a GC|G consensus cleavage site.

https://doi.org/10.1371/journal.pone.0174079.g007
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Structural determinants of DrrS stability

Since we had established that DrrS turnover is slow, we decided to investigate in more detail

which RNA motifs might influence the stability of DrrS, and by extension mycobacterial

sRNAs and mRNAs in general.

The predicted structure of DrrS, according to both mfold [46] and RNAfold [53] includes a

5’ terminal stem-loop in which A1 (TSS2) is the first nucleotide of the stem, (Fig 4). 5’ stem-

loop structures have long been known to stabilise transcripts in E. coli [54], and it has been

shown in E. coli and in B. subtilis that this type of structure is refractory to the action of RppH,

which converts 5’ tri-phosphates to 5’ mono-phosphates. Consequently, these transcripts are

also refractory to the action of RNases E and J, which are both sensitive to the 5’ phosphoryla-

tion state of their substrates [26–28, 55]. Therefore, the presence of unpaired nucleotides 5’ of

a stem leads to destabilisation of the RNA by initiating a sequence of nuclease attacks, first by

RppH and next by RNases E or J, depending on the species [29, 56].

We hypothesised that the presence of a structure known to impede RppH action in other

species, would lead to increased DrrS stability even though no RppH homologue has been

identified in mycobacteria. This hypothesis was tested in vivo by modifying the 5’ structure of

DrrS; if an RppH homologue were involved, the addition of unpaired nucleotides 5’ of the

existing TSS should lead to an increased conversion of the 5’ tri-phosphate to mono-phosphate

followed by a dramatic destabilisation of the RNA. We created a series of DrrS variants with

one to four unpaired nucleotides added 5’ of the native TSS to investigate if this had an effect

on DrrS stability. To maintain the same initiating nucleotide as in the wildtype DrrS, the

Fig 8. Turnover of DrrS in M. tuberculosis. A stationary phase culture of M. tuberculosis OD600 ~6 was diluted into fresh, pre-warmed

medium to OD600 = 0.4 either without rifampicin (panel A and C) or with 200 μg/ml rifampicin (panel B and D) and samples removed for

RNA extraction and Northern blotting at the indicated time points. A and B: Northerns probed for DrrS; C and D: Northerns re-probed for

MTS2823.

https://doi.org/10.1371/journal.pone.0174079.g008
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added nucleotides were all adenosine residues (A1DrrS to A4DrrS). The predicted fold of the

variants was tested in mfold and they all retained the same basic structure. All variants were

expressed from a heterologous, constitutive promoter and contained two ATCCT 3’ repeats

similar to wildtype DrrS followed by a six-nucleotide linker and the strong SynB terminator.

As with the 3’ variants above, all 5’ variants were expressed in M. smegmatis, which has the

same complement of RNases as M. tuberculosis [20]. Northern blotting performed on RNA

isolated from M. smegmatis expressing the recombinant, wildtype DrrS and wildtype DrrS

expressed in M. tuberculosis verified that the two sRNAs were identical in size (not shown).

Initially we tested the stability of DrrS with wildtype TSS in M. smegmatis by Northern blot-

ting (Fig 9A). The result demonstrates that DrrS remains highly stable when expressed from a

heterologous, strong, constitutive promoter in exponential phase in M. smegmatis. Secondly,

we wanted to ensure that the DrrS TSS was shifted according to our predictions and as a conse-

quence that the derivatives increased in size. Hence, in order to compare the sizes of the DrrS

wildtype to its derivatives A1DrrS through to A4DrrS we analysed RNA from all strains by

Northern blotting. Initial experiments indicated that the amounts of DrrS variants in the cells

decreased significantly as more 5’ A-residues were added, to the extent where we could not

detect A3DrrS and A4DrrS with comparable exposure settings as wildtype and A1DrrS (not

shown). In order to compensate for this difference in DrrS levels, we loaded increasing

amounts of total RNA for the Northern blot such that we probed 20 times more RNA from

Fig 9. Turnover of DrrS and its 5’ derivatives in M. smegmatis. A: Northern blot of total RNA from M. smegmatis expressing DrrS from a

heterologous promoter. Rifampicin (200 μg/ml rifampicin) was added at time zero and RNA was isolated at the indicated time point and

probed for DrrS as previously described. B: Northern blot of 1–20 μg of total RNA from M. smegmatis expressing wildtype and 5’ variants of

DrrS. RNA from the strain expressing wildtype DrrS was loaded in the first and last wells to ensure proper alignment. C: Turnover of

DrrS 5’ variants. Each DrrS 5’ variant was expressed in M. smegmatis, cultures were grown to OD600 = 0.6 and rifampicin added to a final

concentration of 200 μg/ml. Samples were withdrawn at the indicated time points and subjected to Northern blotting. As the relative amount

of DrrS varied significantly between the wildtype and the derivatives (see panel B), different amounts of total RNA were loaded on the gels,

i.e. 1 μg each wildtype and A1DrrS; 2 μg of A2DrrS; 10 μg A3DrrS and 20 μg A4DrrS. Cartoon on the right illustrate the 5’ additions (red

asterisks) to the DrrS structure.

https://doi.org/10.1371/journal.pone.0174079.g009
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A4DrrS than from wildtype. The results shown in Fig 9B demonstrate that the sizes of the

derivatives do increase in a stepwise manner, suggesting that each transcript does indeed have

one more nucleotide added 5’ of the previous TSS. Moreover, it is clear that in spite of loading

20 fold more total RNA from the strain expressing the A4DrrS 5’ variant there is still signifi-

cantly more of wildtype DrrS. In essence, the steady-state levels of DrrS variants show an

inverse correlation with the number of unpaired 5’ nucleotides. Since both promoter and the

initiating nucleotide were identical, this already suggested a faster turnover of DrrS as more

unpaired 5’ nucleotides were added.

To explore this phenomenon further, we investigated the kinetics of the turnover of each 5’

derivative after the addition of rifampicin. As before we adjusted the amount of total RNA in

the Northern blots so that the time zero samples of each derivative resulted in more compara-

ble signals. The results, shown in Fig 9C demonstrate that the addition of a single 5’ nucleotide

has a limited effect on the turnover of DrrS, while the addition of two or more has a profound

effect on the turnover of DrrS.

The phosphorylation state of the 5’ nucleotide is altered in vivo

Our analysis so far could not discriminate between the following two mechanisms; i) the full-

length DrrS variants underwent initial tri- to mono-phosphate conversion by an unknown

RppH homologue followed by RNase E or RNase J cleavage; ii) RNase J performed an initial

endonucleolytic cleavage very close to the DrrS 5’ end immediately upstream of the stem-loop.

If an RppH homologue were involved (i) we would expect a significant proportion of the full-

length DrrS variants to be mono-phosphorylated, in particular with increasing numbers of 5’

A-residues. If there were no RppH homologue involved (ii), we would expect all full-length

DrrS to be tri-phosphorylated, while mono-phosphorylated DrrS variants would necessarily

lack one or more 5’ nucleotides. To ascertain which of these mechanisms apply, we performed

RLM-RACE [57] on all DrrS variants. This method exploits the fact that an RNA linker can

only be ligated to a 5’ monophosphate using T4 RNA ligase; hence, if a transcript is tri-phos-

phorylated the linker can only be added after in vitro treatment with pyrophosphohydrolase

(PPH). The subsequent PCR amplification requires the linker sequence and is therefore depen-

dent on ligation. The resulting PCRs of all the derivatives are shown in Fig 10, which indicates

that there is no specific PCR product for wildtype DrrS without prior pyrophosphohydrolase

(PPH) treatment, suggesting a very low frequency of full-length mono-phosphorylated 5’

nucleotides; this is in agreement with previous findings [13]. However, it can be seen that the

relative amount of PPH independent full-length DrrS increases with increasing 5’ additions,

suggesting an increased fraction of full-length mono-phosphorylated transcripts in vivo. These

results indicate that the 5’ phosphorylation state of the DrrS variants was altered by an RppH

homologue in vivo, followed by further cleavage of the mono-phosphorylated transcripts. The

Fig 10. 5’ RACE. PCR products from wildtype and DrrS 5’ variants separated on 3% agarose. Total RNA was

treated with RNA pyrophosphohydrolase (PPH) before linker ligation, cDNA synthesis and PCR amplification.

https://doi.org/10.1371/journal.pone.0174079.g010
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5’ RACE results also rules out that the TSS was inadvertently shifted back towards the native

TSS, as this would have meant that the shorter variants would be tri-phosphorylated.

We conclude that the absence of unpaired nucleotides at the 5’ end of the wildtype DrrS

structure renders the RNA inert to the action of one or more nucleases, and that the addition

of unpaired A-residues to the 5’ end destabilises the transcript. A BLAST search with full-

length E. coli and B. subtilis RppH against M. smegmatis returned several possible NUDIX

hydrolases, but the residues involved in RppH function, according to Foley et al. [58], sug-

gested a closer functional homology to the E. coli than to the B. subtilis protein. S3 Fig shows a

phylogenetic tree with E. coli RppH and the M. smegmatis proteins, which suggests that the

closest relatives of the E. coli RppH are MSMEG_6927 and MSMEG_2390 (homologues of

Rv3908/MutT4 and Rv2985/MutT1, respectively).

The DrrS stem-loop increases expression of reporter construct

In order to establish if the DrrS 5’ stem-loop could lead to increased stability of other tran-

scripts, we tested the expression of the DrrS full-length promoter with and without the stem-

loop in our lacZ-reporter assay. The stem-loop was added immediately downstream of the TSS

such that this was the only difference between the constructs. The expression was measured as

ß-gal activity in M. smegmatis and it revealed that the addition of the stem-loop resulted in a

three-fold increase in expression, from 22.7±2.2 to 72.6±0.7 Miller units/mg protein. As the

promoter regions in the two constructs were identical this strongly suggests that the stem-loop

can confer stability to other transcripts than DrrS, and hence be applied to the engineered

expression of RNA and/or proteins in mycobacteria.

Discussion

Within the last decade it has become increasingly evident that post-transcriptional regulation

of gene expression, including sRNA expression and sRNA/mRNA stability, contributes signifi-

cantly to pathogen adaptation and survival. Nevertheless, knowledge about M. tuberculosis
RNA biology is limited, and in order to fully understand the potential of this pathogen’s ability

to adjust to the host environment we need to study these molecular mechanisms involved in

regulating gene expression. To shed more light on these processes we characterised the expres-

sion, maturation, stability and turnover of DrrS, a DosR regulated sRNA from M. tuberculosis.
We found that in M. bovis BCG, the activity of the main DrrS core promoter was significantly

activated between exponential and stationary phase, suggesting that the promoter may be rec-

ognised by an alternative sigma factor, either in addition to, or instead of SigA, which is mostly

log-phase associated [59]. However, scrutiny of the DrrS core promoter region did not reveal

any obvious motifs for alternative sigma factors. Finally, we found that in M. smegmatis the

DrrS core promoter was significantly activated (13–29 fold) in the presence of DosRtb, while

the activity of the extended promoter region, which includes a known DBS, was only activated

5–8 fold and overall showed a decrease in promoter activity relative to the core promoter

(Table 3). As this pattern was similar in two different strain backgrounds, i.e. mc2155 and

ΔdosRsm we believe that the results are authentic, but based on our current results we cannot

determine if this is due to a novel molecular mechanism of DosR or if there are other factors

involved. The weaker activation by DosRtb in the presence of DosRsm may be due to competi-

tion between the two factors, which have been shown to functionally overlap [60], although we

would expect the level of DosRtb to be significantly higher than DosRsm due to the expression

from a strong, exponential-phase promoter of the former. There are no reports on sigma factor

expression being induced by DosR and hence we assume that activation of the DrrS core pro-

moter by DosR is via a hitherto unknown molecular mechanism that does not require DBS.
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Some regulators stimulate transcription without DNA-binding but rather by directly interact-

ing with RNA polymerase [61], although in our case it remains unclear how the promoter

specificity would be achieved. It is possible that only promoters with -10 regions that diverge

from the SigA consensus in a specific fashion, either by sequence or by spacing to the TSS

would be recognised. The increased expression from the empty vector + dosRtb suggests that

the dosRtb insert may contain a cryptic antisense promoter that drives low level expression of

the lacZ reporter. However, the activity of the core promoter is still more than ten-fold higher

than the empty vector, and hence the presence of such a cryptic promoter does not explain the

dramatic activity of the core promoter in the presence of DosRtb.

Overall our results suggest that DosRtb activates the DrrS core promoter significantly, while

the upstream region with the known DBS and the hypothetical DBS appears to reduce this

expression under the conditions tested here. The activation of the core promoter by DosR may

also explain why we observed an increase in DrrS core promoter activity in stationary phase in

M. bovis BCG.

We have shown that DrrS is generated by rapid 3’ processing of a much longer transcript,

DrrS+, which has no obvious canonical intrinsic terminator structure within the first 350

nucleotides. The absence of such a feature combined with the length of DrrS+ and the presence

of multiple 3’ termini within DrrS+ raises the possibility that termination of DrrS transcription

is Rho-dependent. The mature DrrS (108) is highly structured, while the 3’ domain of DrrS+

(from G165 to U297) is much less so, a feature known to facilitate the action of Rho [62]. The

heterogeneous 3’ tails generated by Rho-dependent termination would explain the multiple

signals observed by Northern blotting as well as a requirement for the observed 3’ processing

at U108/C109 in order to obtain a well-defined 3’ terminus in the mature DrrS. Although

there are no obvious Rho binding sites, i.e. low G, high C content [63], within the first 297

nucleotide DrrS+, we find a high C:G ratio in the 26 nucleotides immediately downstream. It

therefore remains a possibility that Rho dependent termination is initiated in this region,

while rapid processing precludes the detection of these transcripts.

Most known sRNAs are not 3’ processed as the poly-U tail that makes up part of the in-

trinsic terminator is crucial for binding of and regulation by the RNA chaperone, Hfq [64].

However, there is no Hfq homologue in M. tuberculosis; therefore, it is possible that such 3’

processing may be more widespread in this, and other species without Hfq. We have previ-

ously found several M. tuberculosis sRNAs that lack canonical intrinsic terminators at their

mapped 3’ ends [14, 65] and unpublished, suggesting that these may also be subject to 3’ pro-

cessing. Finally, it has been shown that transcription termination of a number of E. coli sRNAs

is likely to involve Rho [66]. Many sRNAs were originally identified by predictive algorithms

that used intrinsic terminators as one of the search parameters e.g. [67]; others were identified

by their association with Hfq [68], which implies the presence of the poly-U tail of an intrinsic

terminator. It is therefore probable that the use of more unbiased approaches such as RNA-seq

and global TSS mapping [69], will lead to the identification of more sRNAs that lack intrinsic

terminators.

Although we assume that U108/C109 of the mature DrrS is generated by processing, we do

not know which nuclease is involved, but the unpaired A110 followed by U111 could be sus-

ceptible to the action of both RNase E, RNase J. Similarly, we find that the high frequency of U

residues in the 5’ processed DrrS variants suggests very strongly that either RNase E or RNase

J may be involved. It is difficult to say if the 3’ ends beyond C122 have been generated by tran-

scription termination, cleavage or trimming, respectively, but in this case the GC-rich nature

of the majority of the mapped termini argues against the action of both RNase J and RNase E.

Finally, although we have found very little evidence for the expression/existence of Rv1734c

mRNA, it remains a possibility that the 3’ domain of DrrS+ and the Rv1734c mRNA form a
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perfect duplex that can be processed by RNase III. Future work may reveal how the primary

DrrS+ and the mature DrrS regulate expression of target mRNAs. Our suggested model for

the series of events has been shown in Fig 11.

DrrS accumulates to high levels in stationary phase, and this accumulation is due to a com-

bination of the increased activity of the core promoter, and, more importantly, a very long

half-life of DrrS, which can be mirrored in M. smegmatis using recombinant DrrS. We have

shown that the 5’ stem-loop of DrrS contributes significantly to this stability and that the sta-

bility can be perturbed by the addition of two, or more nucleotides 5’ of the native TSS. As our

5’ RACE ruled out the removal of 5’ nucleotides by e.g. RNase J, our data strongly suggest that

the 5’ phosphorylation state of the recombinant DrrS variants was modified by an RppH

homologue, of which there is more than one candidate in M. smegmatis. Using RLM-RACE

on M. tuberculosis sRNAs we have previously found that TAP dependent and TAP indepen-

dent 5’ ends were identical, suggesting that tri- to mono-phosphate conversion by an RppH

homologue also takes place in M. tuberculosis [14]. At this stage we cannot pinpoint the homo-

logue responsible for the RppH activity in M. smegmatis nor in M. tuberculosis.
In this study we limited our DrrS 5’ additions to adenine residues to maintain the same ini-

tiating nucleotide in all the DrrS variants. Nevertheless, we still observe a significant reduction

in RNA stability in A3DrrS and A4DrrS, which means that a guanine residue in the second

position is not essential for de-phosphorylation, as it has been shown to be in B. subtilis [70,

71]. This could mean that the mycobacterial enzyme is more similar to the E. coli RppH, which

does not display this preference [58], and our alignments did indeed indicate that the identi-

fied candidates showed more homology to E. coli than B. subtilis RppH. Alternatively, it may

be that there is a level of redundancy between multiple enzymes in mycobacteria, similar to

what has been reported for B. subtilis [56].

A fundamental question is how the pattern of DrrS expression and turnover may promote/

facilitate M. tuberculosis growth and/or pathogenesis. During exponential growth, the expres-

sion of DrrS is on average < one copy per 10 cells, meaning its expression varies from one cell

Fig 11. Cartoon showing the likely order of events in DrrS expression and function. Host-associated stress such as hypoxia or NO

stress induces DosR expression and activation, which in turn leads to increased expression of DrrS+. This transcript is rapidly processed in

multiple places to obtain the highly stable DrrS, which is able to regulate target genes for extended periods of time.

https://doi.org/10.1371/journal.pone.0174079.g011
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to the next, i.e. stochastic variation. The accumulation of DrrS is extremely slow, unlike many

stress-induced sRNAs from Salmonella and E. coli, but the turnover of DrrS is also very slow,

making the kinetics of this sRNA very unusual. As the cells enter stationary phase DrrS levels

increase> 100-fold over the course of one week [13], which we have now shown is to a large

extent due to its unrivalled stability. Although significant, this number also reflects that it takes

at least 24 hours for DrrS levels to double. Moreover, it is highly likely that DrrS stability is fur-

ther increased upon host-induced stress conditions such as hypoxia, which has been shown to

stabilise M. tuberculosis transcripts on a global scale [52]. We did not observe a significant dif-

ference in DrrS stability between wildtype H37Rv and ΔdosR, thereby further supporting the

notion that DrrS expression is DosR dependent. As DrrS turnover is very slow, it is tempting

to speculate that DrrS (and possibly other, very stable M. tuberculosis RNAs), remains in the

cell in times of non-replicating persistence when the rate of de novo RNA synthesis is low.

DrrS would be able to post-transcriptionally modulate gene expression while those transcripts

that depend on continuous RNA synthesis would disappear; similarly, one could also imagine

that DrrS provides a long-term regulatory buffer that modulates translation of stochastically

expressed transcripts during times of low metabolic activity or as the cells emerge from a dor-

mant state. As M. tuberculosis is likely to be in a state of low metabolic activity most of the time

and as DrrS remains in the cells for a considerable time after growth has re-initiated, it is con-

ceivable that a minimum level of DrrS is present most of the time. Finally, as DrrS remains in

the cells for prolonged periods after the addition of rifampicin, which is one of the first line

drugs against TB, one could easily envision that DrrS remains, and plays a significant role

within intracellular M. tuberculosis of patients undergoing chemotherapy with rifampicin. It is

therefore important to investigate further what relationship there may be between drugs, DrrS

accumulation and gene regulation.

In more general terms we have shown that a 5’ stem-loop results in a highly stable transcript

similarly, but not identical to what has been shown in E. coli and in B. subtilis. In the case of

M. tuberculosis DrrS we find that the stem-loop contributes to a half-life that is in excess of 6

hours. Our results also show how the accumulation and abundance of DrrS is highly depen-

dent on this stability. Thus, based on Northern blotting, we estimate that the level of wildtype

DrrS is at least 100-fold higher than the level of A4DrrS when expressed from the same, strong

promoter (Fig 9B). Moreover, we have shown that the basic stem-loop could be added to

another (translated) transcript to enhance its expression. This insight can be applied to modify

the engineered expression of M. tuberculosis genes in combination with other means of regula-

tion. For example, the expression from inducible promoters can be increased without increas-

ing promoter activity per se, as this may lead to more leaky expression. Similarly, a long-lived

mRNA may be desirable for protein expression in recombinant live vaccines. Conversely, a

very unstable mRNA may be desirable for other purposes. Future investigations based on

global TSS mapping and RNA structure predictions, may reveal if stable M. tuberculosis tran-

scripts contain a similar 5’ stem-loop.

This investigation provides a comprehensive insight into several general aspects of M.

tuberculosis RNA biology. We have shown that RNA stability/turnover can be at least as

important as promoter activity in determining the final outcome of RNA levels, as seen by

the decrease in total transcript levels between DrrS and A3DrrS and A4DrrS. We have shown

that a simple stem-loop can enhance the expression of a heterologous gene. We have also

shown that M. tuberculosis sRNAs can be generated by 3’ processing. These characteristics

are likely to apply to many other sRNAs and mRNAs, and this study will hopefully provide a

stepping stone for further studies of M. tuberculosis RNA as well as the proteins that interact

with it.
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Materials and methods

Bacterial strains and growth conditions

Escherichia coli DH5α was grown in LB liquid culture or agar (1.5%) supplemented with

50 μg/ml kanamycin or 250 μg/ml hygromycin B as required.

Mycobacterium smegmatis mc2155 was grown on LB agar supplemented with 25 μg/ml

kanamycin or 50 μg/ml hygromycin B, and in liquid Middlebrook 7H9 medium supplemented

with 10% Albumin, 0.2% glycerol, 0.02% Tween 80 and 20 μg/ml kanamycin or 50 μg/ml

hygromycin B as required.

Mycobacterium tuberculosis H37Rv and Mycobacterium bovis BCG were grown on Middleb-

rook 7H11 agar supplemented with 10% OADC, 0.4% glycerol and 20 μg/ml kanamycin or

50 μg/ml hygromycin B as required and in liquid Middlebrook 7H9 medium supplemented

with 10% ADC, 0.02% glycerol and 0.02% Tween 80 in roller bottles (Cell Master, Griener Bio-

One) or PETG flasks (Nalgene, Thermo Scientific), respectively. For all three mycobacterial

species exponential phase cultures were harvested at 0.5< OD600 < 0.8. Stationary phase cul-

tures for M. tuberculosis and M. bovis BCG were harvested at least 1 week after OD600 = 1.0.

Time course experiments cultures were harvested as indicated

Nitric oxide stress was induced by adding DETA-NO (Sigma-Aldrich) directly to cultures

at a final concentration of 0.1 mM or 1.0 mM, respectively for 2 hours before RNA was iso-

lated. To inhibit transcription initiation rifampicin was added to cultures at a final concentra-

tion of 200 μg/ml.

Oligonucleotides

Oligonucleotides used during this study are listed in S3 Table

Plasmid construction

Plasmids used in this study are listed in S4 Table

pKA425 was derived from pEJ425 [72], by site directed mutagenesis of the sequence sur-

rounding the lacZ start codon changing AAATGG to CCATGG, to include an NcoI site for

translational fusions. pIRaTE (Integrating Regulator and Target Expression vector) was cre-

ated by inserting a gBlocks Gene fragment (IDT) flanked with AgeI and NcoI sites into the

XbaI and NcoI sites of pKA425. The pIRaTE gBlock fragment contains two divergently tran-

scribed regions for target and regulator insertion, respectively. The regulator side contains a

synthetic terminator SynB [47] and fragments were cloned (via the SpeI site) such that the

native transcription start site was upheld. In addition, promoter inserts were exchanged in

order to modify expression levels of both regulator and target.

The M. tuberculosis DrrS was expressed from the M. smegmatis ribosomal rrnB promoter

spanning -80 to -8 [48]. The DrrS overexpression constructs for wild type, 5’ and 3’ variants

were cloned into pIRaTE as SpeI-XhoI fragments. The wild type DrrS construct was made by

PCR amplification (using DrrS.wtf with DrrS.wtr) from H37Rv genomic DNA. DrrS wild type

plasmid was subsequently used as a template for both 5’ and 3’ variant construction. The 5’

and 3’ variants were created with oligos listed in S3 Table. After cloning in E. coli and sequenc-

ing, the constructs were electroporated into M. smegmatis mc2155.

DrrS promoter and stem loop fusions to lacZ were created by either oligonucleotide anneal-

ing or PCR amplification using the primer pairs specified in S1 Table. Each fragment outlined

above was cloned into pEJ414 [73] as XbaI-HindIII fragments. The M. tuberculosis dosR cod-

ing sequence was expressed from the M. chelonae PCL1 core promoter [74], followed by the

SynB synthetic terminator [47]. This was created as a gBlock fragment (IDT technologies)
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flanked with XbaI sites and cloned upstream of the lacZ reporter so that transcription was

divergent from this.

After verification of the sequences, the DrrS promoter reporter constructs were electropo-

rated into either M. smegmatis mc2155 or ΔdosR or M. bovis BCG.

RNA isolation

Total RNA extraction was performed as previously described [13, 14]. Briefly, ice was added

directly to the culture, which was centrifuged at 5000 rpm for 10 minutes at 2˚C and total

RNA was extracted using the FastRNA Pro Blue Kit (MP Bio) according to the manufacturer’s

instructions. RNA concentration and quality was determined using a Nanodrop 2000.

cDNA synthesis, 3’ and 5’ RACE (Rapid amplification of cDNA ends)

DNA was removed from total RNA by treating 10 μg of total RNA with 2 U Turbo DNase I

(Ambion) for 30 minutes at 37˚C, then adding an additional 2 U DNase I for a further 30 min-

utes followed by extraction with acidic phenol-chloroform and ethanol precipitation. cDNA

was synthesised using Superscript III (Invitrogen), with oligonucleotides described below,

largely according to manufacturer’s instruction except for an additional extension step for 30

minutes at 55˚C.

3’ RACE was performed by poly(A) tailing total RNA using E. coli poly-A-polymerase

(Ambion), following manufacturer’s instructions. cDNA was synthesised using the oligo(d)T

primer, and PCRs were done using Red-Taq DNA polymerase (Sigma) with primers shown in

S1 Table.

For 5’ RACE, in order to enable linker ligation, total RNA was treated with RNA 5’ poly-

phosphatase (Epicentre/Cambio) in line with manufacturer’s instructions. An RNA linker was

ligated to the RNA using T4 RNA ligase (NEB) at 17˚C overnight. cDNA synthesis was per-

formed using GR5’ as described, followed by PCR amplification using GR5’ with DrrS.5’RA-

CEr (S1 Table) and Red-Taq (Sigma). PCR reactions were separated on a 3% agarose gel (QA

high resolution, MP Bio), and bands of interested were excised and purified with Qiagen Gel

Extraction kit before cloning.

For 3’ RACE, PCR products were cloned into TOPO TA sequencing vector pCRII-TOPO

(Invitrogen) and sequenced by Source Bioscience.

Northern blotting

Total RNA was separated on 8%, 10% or 15% denaturing acrylamide gels and transferred onto

Brightstar-Plus nylon membrane (Ambion) by electroblotting. RNA was UV cross-linked to

the membrane then stained with 0.3 M sodium acetate/0.03% methylene blue to verify transfer.
32P-UTP labelled riboprobes were synthesised using the mirVana Probe construction Kit

(Ambion) and 32P-UTP (800 mCi/mmol, PerkinElmer) with oligos listed in S1 Table, and hybri-

dised to the membranes overnight in UltraHyb (Invitrogen). RNA sizes were compared to 100–

500 nucleotide Century marker (Ambion) or 50–500 nucleotide low range ssRNA ladder (NEB).

ß-galactosidase assay

ß-galactosidase assays were carried out as described previously [48]. Briefly, cultures were

cooled on ice prior to centrifugation at 2˚C for 10 minutes, pellets were washed three times

with ice cold Z-buffer (40 mM NaH2PO4.H2O, 60 mM Na2HPO4.7H2O, 1 mM MgSO4.7H2O,

10 mM KCl) before disrupting with 150–212 μM acid washed glass beads (Sigma-Aldrich) in a

FastPrep instrument (MP Bio). Disrupted cells were centrifuged for 10 minutes at 13 000rpm
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at 2˚C and the supernatant was retained; an aliquot of each extract was used to determine the

total protein concentration using a BCA protein assay kit (Pierce), ß-mercaptoethanol was

added to the remainder at a final concentration of 38 mM. ß-galactosidase activity was deter-

mined as described [75], normalized to total protein concentration and expressed as units/(mg

protein). Indicated values represent at least three biological replicates.

Supporting information

S1 Fig. Extended time course of DrrS accumulation until three weeks past log-phase. Mem-

brane shows DrrS and 5S loading control at the same time verifying that DrrS is ~110 nucleo-

tides in size.

(TIF)

S2 Fig. Turnover of DrrS in stationary phase in H37Rv and ΔdosR. Rifampicin (200 μg/ml)

was added to stationary phase cultures of M. tuberculosis and RNA was harvested at the indi-

cated time points and analysed by Northern blotting.

(TIF)

S3 Fig. RppH candidates in M. smegmatis. Phylogenetic tree of E. coli RppH and M. smegma-
tis RppH candidates (i.e. NUDIX hydrolases) performed with EBI Clustal Omega (http://www.

ebi.ac.uk/Tools/msa/clustalo/).

(TIFF)

S1 Table. 3’ RACE of DrrS variants expressed in M. smegmatis.

(DOCX)

S2 Table. Extended 3’ RACE of wildtype DrrS from M. tuberculosis.

(DOCX)

S3 Table. DNA oligos used in this study.

(DOCX)

S4 Table. Plasmids used in this study.

(DOCX)
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