221 research outputs found

    Lessons Learned on the Tensile and Bond Behavior of Fabric Reinforced Cementitious Matrix (FRCM) Composites

    Get PDF
    Fabric Reinforced Cementitious Matrix (FRCM) composites represent an effective, compatible and cost-efficient solution for strengthening and retrofitting existing structures. A strong research effort was done to investigate the tensile and bond properties of these materials, as well as the overall behaviour of strengthened members. A Round Robin Test was organized by Rilem TC 250-CSM on 28 FRCM composites comprising basalt, carbon, glass, PBO, aramid and steel textiles, embedded in either cement, lime or geopolymer mortars, to collect an experimental dataset and define test protocols. This paper collects the outcomes of this study to highlight fundamental properties of FRCM and to investigate the variability of test results. Grid spacing, equivalent thickness of the textiles and mechanical properties of FRCM composites, such as stiffness, tensile and bond strength, are provided. Based on the comparison of experimental outcomes, the scatter of the mechanical properties is estimated, as a consequence of the quasi-brittle behaviour of the inorganic matrix and its sensitivity to manufacturing, curing and handling processes. Eventually, the influence of testing implementation, such as gripping method and measuring techniques, are outlined

    Rigid block and finite element analysis of settlement-induced failure mechanisms in historic masonry wall panels

    Get PDF
    The paper is related to the assessment of collapse mechanisms of historic masonry structures suffering settlements induced by ground movements. Two numerical strategies are adopted in order to study the influence of the settled zone on the cracking of masonry buildings: a discrete rigid block model and a continuous homogenized model. The first approach provides an estimate of the collapse load and failure pattern of masonry based on the lower bound theorem of limit analysis. The second approach is formulated in the framework of multi-surface plasticity and implemented in a FE code for the path-following non-linear analysis of masonry wall described as continuous anisotropic plate. Several settlement configurations, of masonry walls under moving ground support are investigated and the corresponding failure patterns resulting from the analysis are obtained resulting in local or global failure modes. The results of the two modeling formulations are compared and discussed in order to highlight the features of the two different approaches in the prediction of settlement-induced damage

    Shake table testing of a low-impact technology for the seismic protection of stone masonry

    Get PDF
    This paper presents a novel low-impact technique for the seismic protection of fair-face masonry walls. The proposed strengthening solution involves the use of carbon-fibre reinforced polymer (CFRP) connectors installed from the outside by perforating the stone elements, combined with grout injections. The connectors cover ¾ of the wall thickness, so as to leave the inner surface undisturbed. Once the work is completed, they are also substantially invisible. Shake table tests were carried out under natural accelerograms on two full-scale irregular multi-leaf stone masonry wall specimens. In order to replicate materials and construction technique of the Apennine historical buildings, the prototypes were made from stones recovered from the debris of a settlement in the municipality of Accumoli (RI, Italy), and the mortar was designed to reproduce lime-poor mortars surveyed in the field. The experimental setup was designed to induce out-of-plane vertical bending under base seismic motion, while allowing the vertical displacement of the wall top. One specimen was tested “as-built” and the other one was tested strengthened, to investigate the gain in seismic performance, the limitation of progressive damage accumulation and the effects on dynamic properties

    Methods and approaches for blind test predictions of out-of-plane behavior of masonry walls: a numerical comparative study

    Get PDF
    Earthquakes cause severe damage to masonry structures due to inertial forces acting in the normal direction to the plane of the walls. The out-of-plane behavior of masonry walls is complex and depends on several parameters, such as material and geometric properties of walls, connections between structural elements, the characteristics of the input motions, among others. Different analytical methods and advanced numerical modeling are usually used for evaluating the out-of-plane behavior of masonry structures. Furthermore, different types of structural analysis can be adopted for this complex behavior, such as limit analysis, pushover, or nonlinear dynamic analysis.Aiming to evaluate the capabilities of different approaches to similar problems, blind predictions were made using different approaches. For this purpose, two idealized structures were tested on a shaking table and several experts on masonry structures were invited to present blind predictions on the response of the structures, aiming at evaluating the available tools for the out-of-plane assessment of masonry structures. This article presents the results of the blind test predictions and the comparison with the experimental results, namely in terms of formed collapsed mechanisms and control outputs (PGA or maximum displacements), taking into account the selected tools to perform the analysis.info:eu-repo/semantics/publishedVersio

    Repair of composite-to-masonry bond using flexible matrix

    Get PDF
    The paper presents an experimental investigation on an innovative repair method, in which composite reinforcements, after debonding, are re-bonded to the substrate using a highly deformable polymer. In order to assess the effectiveness of this solution, shear bond tests were carried out on brick and masonry substrates within two Round Robin Test series organized within the RILEM TC 250-CSM: Composites for Sustainable strengthening of Masonry. Five laboratories from Italy, Poland and Portugal were involved. The shear bond performance of the reinforcement systems before and after repair were compared in terms of ultimate loads, load-displacement curves and strain distributions. The results showed that the proposed repair method may provide higher strength and ductility than stiff epoxy resins, making it an effective and cost efficient technique for several perspective structural applications

    Mortar-based systems for externally bonded strengthening of masonry

    Get PDF
    Mortar-based composite materials appear particularly promising for use as externally bonded reinforcement (EBR) systems for masonry structures. Nevertheless, their mechanical performance, which may significantly differ from that of Fibre Reinforced Polymers, is still far from being fully investigated. Furthermore, standardized and reliable testing procedures have not been defined yet. The present paper provides an insight on experimental-related issues arising from campaigns on mortar-based EBRs carried out by laboratories in Italy, Portugal and Spain. The performance of three reinforcement systems made out of steel, carbon and basalt textiles embedded in inorganic matrices has been investigated by means of uniaxial tensile coupon testing and bond tests on brick and stone substrates. The experimental results contribute to the existing knowledge regarding the structural behaviour of mortar-based EBRs against tension and shear bond stress, and to the development of reliable test procedures aiming at their homogenization/standardization

    Insight from an Italian Delphi Consensus on EVAR feasibility outside the instruction for use: the SAFE EVAR Study

    Get PDF
    BACKGROUND: The SAfety and FEasibility of standard EVAR outside the instruction for use (SAFE-EVAR) Study was designed to define the attitude of Italian vascular surgeons towards the use of standard endovascular repair (EVAR) for infrarenal abdominal aortic aneurysm (AAA) outside the instruction for use (IFU) through a Delphi consensus endorsed by the Italian Society of Vascular and Endovascular Surgery (Societa Italiana di Chirurgia Vascolare ed Endovascolare - SICVE). METHODS: A questionnaire consisting of 26 statements was developed, validated by an 18 -member Advisory Board, and then sent to 600 Italian vascular surgeons. The Delphi process was structured in three subsequent rounds which took place between April and June 2023. In the first two rounds, respondents could indicate one of the following five degrees of agreement: 1) strongly agree; 2) partially agree; 3) neither agree nor disagree; 4) partially disagree; 5) strongly disagree; while in the third round only three different choices were proposed: 1) agree; 2) neither agree nor disagree; 3) disagree. We considered the consensus reached when >70% of respondents agreed on one of the options. After the conclusion of each round, a report describing the percentage distribution of the answers was sent to all the participants. RESULTS: Two -hundred -forty-four (40.6%) Italian Vascular Surgeons agreed to participate the first round of the Delphi Consensus; the second and the third rounds of the Delphi collected 230 responders (94.3% of the first -round responders). Four statements (15.4%) reached a consensus in the first rounds. Among the 22 remaining statements, one more consensus (3.8%) was achieved in the second round. Finally, seven more statements (26.9%) reached a consensus in the simplified last round. Globally, a consensus was reached for almost half of the proposed statements (46.1%). CONCLUSIONS: The relatively low consensus rate obtained in this Delphi seems to confirm the discrepancy between Guideline recommendations and daily clinical practice. The data collected could represent the source for a possible guidelines' revision and the proposal of specific Good Practice Points in all those aspects with only little evidence available

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore