125 research outputs found

    First searches for optical counterparts to gravitational-wave candidate events

    Get PDF
    During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type

    Measurement of ϒ production in pp collisions at √s = 2.76 TeV

    Get PDF
    The production of ϒ(1S), ϒ(2S) and ϒ(3S) mesons decaying into the dimuon final state is studied with the LHCb detector using a data sample corresponding to an integrated luminosity of 3.3 pb−1 collected in proton–proton collisions at a centre-of-mass energy of √s = 2.76 TeV. The differential production cross-sections times dimuon branching fractions are measured as functions of the ϒ transverse momentum and rapidity, over the ranges pT < 15 GeV/c and 2.0 < y < 4.5. The total cross-sections in this kinematic region, assuming unpolarised production, are measured to be σ (pp → ϒ(1S)X) × B ϒ(1S)→μ+μ− = 1.111 ± 0.043 ± 0.044 nb, σ (pp → ϒ(2S)X) × B ϒ(2S)→μ+μ− = 0.264 ± 0.023 ± 0.011 nb, σ (pp → ϒ(3S)X) × B ϒ(3S)→μ+μ− = 0.159 ± 0.020 ± 0.007 nb, where the first uncertainty is statistical and the second systematic

    Study of D-(*())(+)(sJ) mesons decaying to D*K-+(S)0 and D*K-0(+) final states

    Get PDF
    A search is performed for DsJ()+D^{(*)+}_{sJ} mesons in the reactions ppD+KS0Xpp \to D^{*+} K^0_{\rm S} X and ppD0K+Xpp \to D^{*0} K^+ X using data collected at centre-of-mass energies of 7 and 8 TeV with the LHCb detector. For the D+KS0D^{*+} K^0_{\rm S} final state, the decays D+D0π+D^{*+} \to D^0 \pi^+ with D0Kπ+D^0 \to K^- \pi^+ and D0Kπ+π+πD^0 \to K^- \pi^+ \pi^+ \pi^- are used. For D0K+D^{*0} K^+, the decay D0D0π0D^{*0} \to D^0 \pi^0 with D0Kπ+D^0 \to K^- \pi^+ is used. A prominent Ds1(2536)+D_{s1}(2536)^+ signal is observed in both D+KS0D^{*+} K^0_{\rm S} and D0K+D^{*0} K^+ final states. The resonances Ds1(2700)+D^*_{s1}(2700)^+ and Ds3(2860)+D^*_{s3}(2860)^+ are also observed, yielding information on their properties, including spin-parity assignments. The decay Ds2(2573)+D+KS0D^*_{s2}(2573)^+ \to D^{*+} K^0_{\rm S} is observed for the first time, at a significance of 6.9 σ\sigma, and its branching fraction relative to the Ds2(2573)+D+KS0D^*_{s2}(2573)^+ \to D^+ K^0_{\rm S} decay mode is measured

    Search for Violations of Lorentz Invariance and CPT Symmetry in B-(s)(0) Mixing

    Get PDF
    Violations of CPT symmetry and Lorentz invariance are searched for by studying interference effects in B^{0} mixing and in B_{s}^{0} mixing. Samples of B^{0}→J/ψK_{S}^{0} and B_{s}^{0}→J/ψK^{+}K^{-} decays are recorded by the LHCb detector in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3  fb^{-1}. No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and CPT symmetry. Results are expressed in terms of the standard model extension parameter Δa_{μ} with precisions of O(10^{-15}) and O(10^{-14})  GeV for the B^{0} and B_{s}^{0} systems, respectively. With no assumption on Lorentz (non)invariance, the CPT-violating parameter z in the B_{s}^{0} system is measured for the first time and found to be Re(z)=-0.022±0.033±0.005 and Im(z)=0.004±0.011±0.002, where the first uncertainties are statistical and the second systematic

    FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS

    Get PDF
    During the LIGO and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type

    Study of the doubly charmed tetraquark T+cc

    Get PDF
    Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T+cc tetraquark with a quark content of ccu⎯⎯⎯d⎯⎯⎯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector T+cc state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T+cc state. In addition, an unexpected dependence of the production rate on track multiplicity is observed

    First study of the CP-violating phase and decay-width difference in Bs 0→ψ(2S)ϕ decays

    No full text
    A time-dependent angular analysis of Bs 0→ψ(2S)ϕ decays is performed using data recorded by the LHCb experiment. The data set corresponds to an integrated luminosity of 3.0fb−1 collected during Run 1 of the LHC. The CP-violating phase and decay-width difference of the Bs 0 system are measured to be ϕs=0.23−0.28 +0.29±0.02rad and ΔΓs=0.066−0.044 +0.041±0.007ps−1, respectively, where the first uncertainty is statistical and the second systematic. This is the first time that ϕs and ΔΓs have been measured in a decay containing the ψ(2S) resonance. © 2016 The Author(s

    Observation of Lambda(0)(b) -> psi (2S)pK(-) and Lambda(0)(b) -> J/psi pi(+)pi(-)pK(-) decays and a measurement of the A(b)(0) baryon mass

    No full text
    The decays Lambda(0)(b) -> psi(2S)pK(-) and Lambda(0)(b) -> J/psi pi(+)pi(-)pK(-) are observed in a data sample corresponding to an integrated luminosity of 3 fb(-1), collected in proton-proton collisions at 7 and 8 TeV centre-of-mass energies by the LHCb detector. The psi(2S) mesons are reconstructed through the decay modes psi(2S) -> mu(+)mu(-) and psi(2S) -> J/psi pi(+)pi(-) The branching fractions relative to that of Lambda(0)(b) -> J/psi pk(-) are measured to be [GRAPHICS] where the first uncertainties are statistical, the second are systematic and the third is related to the knowledge of J/psi and psi(2S) branching fractions. The mass of the Ai baryon is measured to be M(Lambda(0)(b)) = 5619.65 +/- 0.17 0.17 MeV/c(2), where the uncertainties are statistical and systematic

    Measurement of the B-s(0) -> D-s(()*D-)+(s)(*()-) branching fractions

    Get PDF
    The branching fraction of the decay B-s(0) -> D-s(()*D-)+(s)(*()-) is measured using pp collision data corresponding to an integrated luminosity of 1.0 fb(-1), collected using the LHCb detector at a center-of-mass energy of 7 TeV. It is found to be B(B-s(0) -> D-s(()*D-)(s)(*()-)) = (3.05 +/- 0.10 +/- 0.20 +/- 0.34) where the uncertainties are statistical, systematic, and due to the normalization channel, respectively. The branching fractions of the individual decays corresponding to the presence of one or two D-s(*+/-) are also measured. The individual branching fractions are found to be B(B-s(0) -> D-s*D-+/-(s)-/+) = (1.35 +/- 0.06 +/- 0.09 +/- 0.15) B(B-s(0) -> D-s*D-+(s)*(-)) = (1.27 +/- 0.08 +/- 0.10 +/- 0.14)%. All three results are the most precise determinations to date

    First observation of the rare B+ -> D+K+pi(-) decay

    No full text
    The B+ -> D+K+pi(-) decay is observed in a data sample corresponding to 3.0 fb(-1) of pp collision data recorded by the LHCb experiment during 2011 and 2012. The signal significance is 8 sigma and the branching fraction is measured to be B(B+ -> D+K+pi(-)) = (5.31 +/- 0.90 +/- 0.48 +/- 0.35) x 10(-6), where the uncertainties are statistical, systematic and due to the normalization mode B+ -> D-K+pi(+), respectively. The Dalitz plot appears to be dominated by broad structures. Angular distributions are exploited to search for quasi-two-body contributions from B+ -> D*(2)(2460)K-0(+) and B+ -> (D+K*)(892)(0) decays. No significant signals are observed and upper limits are set on their branching fractions
    corecore