1,431 research outputs found
Thermoelectric DC conductivities with momentum dissipation from higher derivative gravity
We present a mechanism of momentum relaxation in higher derivative gravity by
adding linear scalar fields to the Gauss-Bonnet theory. We analytically
computed all of the DC thermoelectric conductivities in this theory by adopting
the method given by Donos and Gauntlett in [arXiv:1406.4742]. The results show
that the DC electric conductivity is not a monotonic function of the effective
impurity parameter : in the small limit, the DC conductivity is
dominated by the coherent phase, while for larger , pair creation
contribution to the conductivity becomes dominant, signaling an incoherent
phase. In addition, the DC heat conductivity is found independent of the
Gauss-Bonnet coupling constant.Comment: 1+19 pages, 2 figures,typos in Eq.(40) correcte
Phantom Cosmology with Non-minimally Coupled Real Scalar Field
We find that the expansion of the universe is accelerating by analyzing the
recent observation data of type \textsc{I}a supernova(SN-Ia) .It indicates
that the equation of state of the dark energy might be smaller than -1,which
leads to the introduction of phantom models featured by its negative kinetic
energy to account for the regime of equation of state parameter .In this
paper the possibility of using a non-minimally coupled real scalar field as
phantom to realize the equation of state parameter is discussed.The main
equations which govern the evolution of the universe are obtained.Then we
rewrite them with the observable quantities.Comment: 12 pages, 2 figures. Accepted for publication in Gen.Rel.Gra
HLA-matched sibling transplantation with G-CSF mobilized PBSCs and BM decreases GVHD in adult patients with severe aplastic anemia
<p>Abstract</p> <p>Background</p> <p>Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for severe aplastic anemia (SAA). However, graft failure and graft-versus-host disease (GVHD) are major causes of the early morbidity in Allo-HSCT.</p> <p>Methods</p> <p>To reduce graft failure and GVHD, we treated fifteen patients with SAA using high- dose of HSCT with both G-CSF mobilized PB and BMSCs from HLA-identical siblings to treat patients with SAA.</p> <p>Results</p> <p>All patients had successful bone marrow engraftment. Only one patient had late rejection. Median time to ANC greater than 0.5 × 10<sup>9</sup>/L and platelet counts greater than 20 × 10<sup>9</sup>/L was 12 and 16.5 days, respectively. No acute GVHD was observed. The incidence of chronic GVHD was 6.67%. The total three-year probability of disease-free survival was 79.8%.</p> <p>Conclusion</p> <p>HSCT with both G-CSF mobilized PB and BMSCs is a promising approach for heavily transfused and/or allo-immunized patients with SAA.</p
Nanosizing techniques for improving bioavailability of drugs
The poor solubility of significant number of Active Pharmaceutical Ingredients (APIs) has become a major challenge in the drug development process. Drugs with poor solubility are difficult to formulate by conventional methods and often show poor bioavailability. In the last decade, attention has been focused on developing nanocrystals for poorly water soluble drugs using nanosizing techniques. Nanosizing is a pharmaceutical process that changes the size of a drug to the sub-micron range in an attempt to increase its surface area and consequently its dissolution rate and bioavailability. The effectiveness of nanocrystal drugs is evidenced by the fact that six FDA approved nanocrystal drugs are already on the market. The bioavailabilities of these preparations have been significantly improved compared to their conventional dosage forms. There are two main approaches for preparation of drug nanocrystals; these are the top-down and bottom-up techniques. Top-down techniques have been successfully used in both lab scale and commercial scale manufacture. Bottom-up approaches have not yet been used at a commercial level, however, these techniques have been found to produce narrow sized distribution nanocrystals using simple methods. Bottom-up techniques have been also used in combination with top-down processes to produce drug nanoparticles. The main aim of this review article is to discuss the various methods for nanosizing drugs to improve their bioavailabilities
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …