690 research outputs found

    Generation of two-mode nonclassical states and a quantum phase gate operation in trapped ion cavity QED

    Full text link
    We propose a scheme to generate nonclassical states of a quantum system, which is composed of the one-dimensional trapped ion motion and a single cavity field mode. We show that two-mode SU(2) Schr\"odinger-cat states, entangled coherent states, two-mode squeezed vacuum states and their superposition can be generated. If the vibration mode and the cavity mode are used to represent separately a qubit, a quantum phase gate can be implemented.Comment: to appear in PR

    Generation of arbitrary two dimensional motional state of a trapped ion

    Full text link
    We present a scheme to generate an arbitrary two-dimensional quantum state of motion of a trapped ion. This proposal is based on a sequence of laser pulses, which are tuned appropriately to control transitions on the sidebands of two modes of vibration. Not more than (M+1)(N+1)(M+1)(N+1) laser pulses are needed to generate a pure state with upper phonon number MM and NN in the xx and yy direction respectively.Comment: to appear in PR

    The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry

    Get PDF
    The closest tensors of higher symmetry classes are derived in explicit form for a given elasticity tensor of arbitrary symmetry. The mathematical problem is to minimize the elastic length or distance between the given tensor and the closest elasticity tensor of the specified symmetry. Solutions are presented for three distance functions, with particular attention to the Riemannian and log-Euclidean distances. These yield solutions that are invariant under inversion, i.e., the same whether elastic stiffness or compliance are considered. The Frobenius distance function, which corresponds to common notions of Euclidean length, is not invariant although it is simple to apply using projection operators. A complete description of the Euclidean projection method is presented. The three metrics are considered at a level of detail far greater than heretofore, as we develop the general framework to best fit a given set of moduli onto higher elastic symmetries. The procedures for finding the closest elasticity tensor are illustrated by application to a set of 21 moduli with no underlying symmetry.Comment: 48 pages, 1 figur

    Impact of Demographic and Obstetric Factors on Infant Brain Volumes: A Population Neuroscience Study

    Get PDF
    Individual differences in neuroanatomy are associated with intellectual ability and psychiatric risk. Factors responsible for this variability remain poorly understood. We tested whether 17 major demographic and obstetric variables were associated with individual differences in brain volumes in 756 neonates assessed with MRI. Gestational age at MRI, sex, gestational age at birth, and birthweight were the most significant predictors, explaining 31% to 59% of variance. Unexpectedly, earlier born babies had larger brains than later born babies after adjusting for other predictors. Our results suggest earlier born children experience accelerated brain growth, either as a consequence of the richer sensory environment they experience outside the womb or in response to other factors associated with delivery. In the full sample, maternal and paternal education, maternal ethnicity, maternal smoking, and maternal psychiatric history showed marginal associations with brain volumes, whereas maternal age, paternal age, paternal ethnicity, paternal psychiatric history, and income did not. Effects of parental education and maternal ethnicity are partially mediated by differences in birthweight. Remaining effects may reflect differences in genetic variation or cultural capital. In particular late initiation of prenatal care could negatively impact brain development. Findings could inform public health policy aimed at optimizing child development

    Environmental influences on infant cortical thickness and surface area

    Get PDF
    Cortical thickness (CT) and surface area (SA) vary widely between individuals and are associated with intellectual ability and risk for various psychiatric and neurodevelopmental conditions. Factors influencing this variability remain poorly understood, but the radial unit hypothesis, as well as the more recent supragranular cortex expansion hypothesis, suggests that prenatal and perinatal influences may be particularly important. In this report, we examine the impact of 17 major demographic and obstetric history variables on interindividual variation in CT and SA in a unique sample of 805 neonates who received MRI scans of the brain around 2 weeks of age. Birth weight, postnatal age at MRI, gestational age at birth, and sex emerged as important predictors of SA. Postnatal age at MRI, paternal education, and maternal ethnicity emerged as important predictors of CT. These findings suggest that individual variation in infant CT and SA is explained by different sets of environmental factors with neonatal SA more strongly influenced by sex and obstetric history and CT more strongly influenced by socioeconomic and ethnic disparities. Findings raise the possibility that interventions aimed at reducing disparities and improving obstetric outcomes may alter prenatal/perinatal cortical development

    Genetic influences on neonatal cortical thickness and surface area

    Get PDF
    Genetic and environmental influences on cortical thickness (CT) and surface area (SA) are thought to vary in a complex and dynamic way across the lifespan. It has been established that CT and SA are genetically distinct in older children, adolescents, and adults, and that heritability varies across cortical regions. Very little, however, is known about how genetic and environmental factors influence infant CT and SA. Using structural MRI, we performed the first assessment of genetic and environmental influences on normal variation of SA and CT in 360 twin neonates. We observed strong and significant additive genetic influences on total SA (a2 = 0.78) and small and nonsignificant genetic influences on average CT (a2 = 0.29). Moreover, we found significant genetic overlap (genetic correlation = 0.65) between these global cortical measures. Regionally, there were minimal genetic influences across the cortex for both CT and SA measures and no distinct patterns of genetic regionalization. Overall, outcomes from this study suggest a dynamic relationship between CT and SA during the neonatal period and provide novel insights into how genetic influences shape cortical structure during early development

    MMS2plot: An R Package for Visualizing Multiple MS/MS Spectra for Groups of Modified and Non-Modified Peptides

    Get PDF
    A large number of post-translational modifications (PTMs) in proteins are buried in the unassigned mass spectrometric (MS) spectra in shot-gun proteomics datasets. Because the modified peptide fragments are low in abundance relative to the corresponding non-modified versions, it is critical to develop tools that allow facile evaluation of assignment of PTMs based on the MS/MS spectra. Such tools will preferably have the ability to allow comparison of fragment ion spectra and retention time between the modified and unmodified peptide pairs or group. Herein, MMS2plot, an R package for visualizing peptide-spectrum matches (PSMs) for multiple peptides, is described. MMS2plot features a batch mode and generates the output images in vector graphics file format that facilitate evaluation and publication of the PSM assignment. MMS2plot is expected to play an important role in PTM discovery from large-scale proteomics datasets generated by liquid chromatography-MS/MS. The MMS2plot package is freely available at https://github.com/lileir/MMS2plot under the GPL-3 license

    Hadron yields and spectra in Au+Au collisions at the AGS

    Full text link
    Inclusive double differential multiplicities and rapidity density distributions of hadrons are presented for 10.8 A GeV/c Au+Au collisions as measured at the AGS by the E877 collaboration. The results indicate that large amounts of stopping and collective transverse flow effects are present. The data are also compared to the results from the lighter Si+Al system.Comment: 12 pages, latex, 10 figures, submitted to Nuclear Physics A (Quark Matter 1996 Proceedings

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
    • …
    corecore