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Abstract
Genetic and environmental influences on cortical thickness (CT) and surface area (SA) are

thought to vary in a complex and dynamic way across the lifespan. It has been established that

CT and SA are genetically distinct in older children, adolescents, and adults, and that heritability

varies across cortical regions. Very little, however, is known about how genetic and environmen-

tal factors influence infant CT and SA. Using structural MRI, we performed the first assessment

of genetic and environmental influences on normal variation of SA and CT in 360 twin neonates.

We observed strong and significant additive genetic influences on total SA (a2 = 0.78) and small

and nonsignificant genetic influences on average CT (a2 = 0.29). Moreover, we found significant

genetic overlap (genetic correlation = 0.65) between these global cortical measures. Regionally,

there were minimal genetic influences across the cortex for both CT and SA measures and no

distinct patterns of genetic regionalization. Overall, outcomes from this study suggest a dynamic

relationship between CT and SA during the neonatal period and provide novel insights into how

genetic influences shape cortical structure during early development.
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1 | INTRODUCTION

Individual variations in cortical thickness and surface area are associ-

ated with complex psychiatric and neurodevelopmental conditions,

intellectual ability, and aging (Janssen et al., 2014; Long et al., 2012;

Shaw et al., 2006; Wolosin, Richardson, Hennessey, Denckla, & Mos-

tofsky, 2009). Current evidence suggests CT and SA are independent

phenotypes with strong, but distinct genetic underpinnings. Twin and

family studies have revealed that overall total SA and average CT are

highly heritable in adults, with genetic factors accounting for up to
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89 and 81% of the total phenotypic variance respectively (Panizzon

et al., 2009; Winkler et al., 2010). Regionally, heritability measures are

found to vary significantly across the cortex, ranging from 17 to 76%

for SA and from 6 to 73% for CT, after correcting for global measures

(Winkler et al., 2010). These studies also reveal small and nonsignifi-

cant genetic correlations between CT and SA, suggesting that both

phenotypes are driven by different sets of genetic factors. It has often

been assumed that genetic independence in CT and SA reflects differ-

ent cellular and neural processes occurring during fetal brain develop-

ment. At present, however, the majority of heritability research has

been performed in children, adolescents, and adults and there are no

investigations that directly focus on genetic contributions to CT and

SA during this foundational period of cortical development.

To better address the genetic underpinnings of CT and SA and

their potential neurodevelopmental origins, it is critical to evaluate

these cortical measures during prenatal and early postnatal periods.

According to the radial unit hypothesis and the supragranular layer

expansion hypothesis, surface area is primarily driven by the number

of cortical columns generated during the early embryonic period and

cortical thickness is determined by the number and size of cells within

a column, packing density, as well as the number of neuronal pro-

cesses, glial processes, and synapses arising primarily during the fetal

and perinatal periods (Rakic, 1995, 2009). Additionally, CT and SA

development are also regulated by outer radial glial cells which play a

critical role in the radial and tangential expansion of the topmost

layers of the cortex (Nowakowski, Pollen, Sandoval-Espinosa, & Krieg-

stein 2016). These developmental processes are associated with

dynamic patterns of gene expression. Indeed, during the prenatal

period, the majority of brain-expressed genes show strong temporal

changes (Kang et al., 2011) and large regional differences in expres-

sion (Pletikos et al., 2014). During the early postnatal period, there is a

shift in temporal and spatial gradients resulting in relatively stable

levels of gene expression over time and minimal regional differences

across the cortex. In adolescence, interareal differences in gene

expression reemerge across the cortex (Kang et al., 2011; Pletikos

et al., 2014; Silbereis, Pochareddy, Zhu, Li, & Sestan, 2016) and tem-

poral gradients shift from being moderate to extremely rare by adult-

hood. Together, these findings suggest that genetic influences on

cortical features are not set during the fetal period but are extremely

dynamic across the lifespan; thus, heritability estimates for both CT

and SA are likely to vary across different periods of development.

Moreover, twin studies of CT and SA during infancy may capture

ongoing neurodevelopmental processes that are very different from

those underlying heritability estimates in adults. During the neonatal

period, the cortical surface expands 0.51% and the cortical mantle

grows 0.09% per day (Jha et al., 2018). Dramatic growth of the cortex

continues into the first 2 years with CT and SA reaching 97 and 64%

of adult values, respectively (Lyall et al., 2015). In contrast, growth

rates of CT and SA are relatively modest during childhood and adoles-

cence (Gilmore, Knickmeyer, & Gao, 2018; Raznahan et al., 2011).

Specifically, CT decreases linearly after the first 2 years and SA

expands into late childhood but gradually declines thereafter. In addi-

tion to rapid CT and SA growth, our neuroimaging timepoint also cap-

tures the completion of primary gyrification and the beginning of

primary myelination. Large-scale transformations in cortical

morphology that begin prenatally (Budday, Steinmann, & Kuhl, 2015;

Kochunov et al., 2010) result in well-developed primary sulci and gyri

by term birth (Hill et al., 2010). As cortical folds emerge, there is also

rapid organization and myelination of white matter fiber bundles,

peaking in the first year of life and leading to enhanced neuronal sig-

naling (Dubois et al., 2014). Both primary gyrification and myelination

contribute to early cortical development and likely influence the

developmental trajectories of neonatal CT and SA.

Genes expressed at high levels during early fetal development are

likely involved in neurogenesis, proliferation, and migration of neuro-

nal cell types and genes expressed at high levels during late fetal and

early postnatal development likely reflect neuronal and glial differenti-

ation and the robust growth of dendrites and synapses (Stiles & Jerni-

gan, 2010). These genes may be the primary drivers of rapid growth

and variation in neonatal CT and SA. Genes driving CT and SA during

later periods may be critical to processes of synaptic transmission and

refinement, cell–cell signaling, and neurodegeneration (Pletikos et al.,

2014). Interestingly, our recent genome-wide association study

(GWAS) of neonatal neuroimaging phenotypes suggests that genetic

determinants of neonatal brain volumes are highly distinct from those

identified in imaging genetic studies in adolescents and adults (Xia

et al., 2017). Thus, investigating genetic influences during this period

will be crucial to our continued understanding of typical brain devel-

opment and provide a deeper understanding of the heritability of rap-

idly growing cortical features like CT and SA.

In this article, we report findings from the first twin study of corti-

cal thickness and surface area during infancy. We examine the

genetic, shared environmental, and unique environmental contribu-

tions to individual differences in neonatal CT and SA using both global

CT and SA as well as CT and SA measures in 78 cortical regions. We

also assess genetic correlations among regions of interest (ROIs) for

CT and SA measures to identify regions with shared genetic architec-

ture. Based on the radial unit hypothesis, we predict that CT and SA

will have independent genetic origins. Moreover, given the dynamic

patterns of gene expression and interareal differences within the pre-

natal and early postnatal period, we hypothesize that heritability esti-

mates will be highly distinct across the cortex. Outcomes from this

study fill a critical gap in our understanding of how genetic influences

shape cortical structure during early development and provide key

insight for future imaging genetic studies of cortical structure.

2 | MATERIALS AND METHODS

2.1 | Subjects

This study included 234 dizygotic and 126 monozygotic twins

between the ages of 9 and 92 postnatal days, drawn from the UNC

Early Brain Development Study (Gilmore et al., 2010; Knickmeyer

et al., 2008, 2016). Mothers with twin pregnancies were recruited

during the second trimester of pregnancy from outpatient OB-GYN

clinics in central North Carolina. Exclusion criteria included major

medical illnesses in the mother or abnormal fetal ultrasounds. Zygosity

was determined by polymerase chain reaction-short tandem repeat

(PCR-STR) analysis of 14 loci on DNA extracted from buccal cells
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(BRT Laboratories, Baltimore, MD). Detailed subject demographics

can be viewed in Table 1. After complete description of the study to

subjects’ parent(s), written informed consent was obtained. Study pro-

tocols were approved by the Institutional Review Board of the UNC

School of Medicine.

2.2 | Image acquisition

All MRI images were collected at UNC’s Biomedical Research Imaging

Center using a Siemens Allegra head-only 3 T scanner (N = 295) or a

Siemens TIM Trio 3 T scanner (N = 65) (Siemens Medical System, Inc.,

Erlangen, Germany). Infants were scanned at 37.5 � 17.1 days post

birth on average. All neonate subjects were fitted with earplugs,

secured into a vacuum-fixed immobilization device, and scanned dur-

ing unsedated natural sleep. Heart rate and oxygen saturation were

monitored using a pulse oximeter. On the Allegra scanner, proton den-

sity and T2 weighted structural images were acquired using a turbo-

spin echo sequence (TSE, TR = 6,200 ms, TE1 = 20 ms, TE2 = 119

ms, flip angle = 150�, spatial resolution = 1.25 mm × 1.25 mm ×

1.95 mm, sequence name = Type1, N = 118). For neonates who were

deemed unlikely to sleep through the scan session, a “fast” turbo-spin

echo sequence was collected using a decreased TR, a smaller image

matrix, and fewer slices (TSE, TR range = 5,270–5,690 ms, TE1

range = 20–21 ms, TE2 range = 119–124 ms, flip angle = 150�, spa-

tial resolution = 1.25 mm × 1.25 mm × 1.95 mm, sequence name =

Type2, N = 177). On the Trio, subjects were initially scanned using a

TSE protocol (TR = 6,200 ms, TE1 = 17, TE2 = 116 ms, flip angle =

150�, spatial resolution = 1.25 mm × 1.25 mm × 1.95 mm, sequence

name = Type3, N = 11) while the rest were scanned using a 3DT2

SPACE protocol (TR = 3,200 ms, TE = 406, flip angle = 120�, spatial

resolution = 1 mm × 1 mm × 1 mm, sequence name = Type4,

N = 54). Because sequence parameters could have a significant influ-

ence on cortical measures, we used T2 sequence (Type1–Type4) as a

covariate in all of the analyses described in this study.

All T2 images were visually evaluated for motion artifacts. Two

independent experts rated the motion of each image using a 4-point

scale where 1 indicated no visible motion and 4 indicated significant

motion artifacts. Average motion scores are summarized in Supporting

Information Table S1. Images deemed unusable due to extreme levels

of motion were excluded in this analysis.

2.3 | Image analysis

Cortical thickness and surface area measures were derived for all sub-

jects using an image analysis pipeline previously described by Li

et al. (2016). First, all T2-weighted images were preprocessed for tis-

sue segmentation using a standard infant-specific pipeline (Li et al.,

2013). This included skull stripping and manual editing of non-brain

tissue, removal of the cerebellum and brain stem, corrections for

intensity inhomogeneity, and finally, a rigid alignment of all the images

into an average atlas space (Shi et al., 2011). Thereafter, an infant-

specific path-driven coupled level sets method (described in Wang

et al., 2014) was applied to segment gray matter (GM), white matter

(WM), and cerebrospinal fluid (CSF). Non-cortical regions were

masked, and tissues were divided into left and right hemispheres. A

deformable surface method (Li et al., 2012, 2014) was then applied to

the tissue segmentations to reconstruct the inner, middle, and outer

cortical surfaces. The inner surface was defined as the boundary

between gray and white matter and the outer surface was defined as

the boundary between the gray matter and CSF. A third, middle corti-

cal surface, was defined as the layer lying in the geometric center of

the inner and outer surfaces of the cortex. The deformable surface

method involved a topological correction of the WM to ensure spheri-

cal topology, a tessellation of the corrected WM to generate a trian-

gular mesh, and the deformation of the inner mesh toward the

reconstruction of each inner, middle, and outer surface.

TABLE 1 Demographics for neonate twin sample

Continuous variables Average SD

Birth weight (g) 2,410.4 542.7

Gestational age at birth (days) 249.5 17.1

Postnatal age at MRI (days) 37.5 17.1

5 min Apgar 8.6 0.8

Maternal education (years) 15.0 3.3

Paternal education (years) 14.8 3.5

Maternal age (years) 30.4 5.6

Paternal age (years) 32.9 6.8

Categorical variables N %

Zygosity Monozygotic 126 35%

Dizygotic 234 65%

NICU stay >24 hr No 236 66%

Yes 124 34%

Sex Male 203 56%

Female 157 44%

Delivery method Vaginal 98 27%

C-section 262 73%

Household income High 98 27%

Mid 106 29%

Low 136 38%

Unknown 20 6%

Maternal ethnicity Caucasian 274 76%

African American 78 22%

Asian 6 2%

Native American 2 1%

Paternal ethnicity Caucasian 266 74%

African American 78 22%

Asian 14 4%

Native American 2 1%

Maternal psychiatric history No 242 67%

Yes 118 33%

Paternal psychiatric history No 322 89%

Yes 38 11%

Maternal smoking No 340 94%

Yes 20 6%

T2 sequence type Type 1 118 33%

Type 2 177 49%

Type 3 11 3%

Type 4 54 15%

5000 JHA ET AL.



All cortical surfaces for the left and right hemisphere were visually

examined for accurate mapping. In order to generate a regional parcel-

lation, all inner cortical surfaces were smoothed, inflated, and mapped

to the unit sphere (Fischl, Sereno, & Dale, 1999). The cortical surfaces

were parcellated into 78 regions of interest based on an infant-

adapted 90 region parcellation atlas (Gilmore et al., 2012; Tzourio-

Mazoyer et al., 2002). Twelve regions represent subcortical structures

and were therefore not examined. CT was computed for each vertex

as the average value of the minimum distance from the inner to the

outer surfaces and the minimum distance from the outer to the inner

surfaces. SA was computed based on the central cortical surface. The

average CT and total SA were calculated for each ROI based on corre-

sponding values at each vertex. Overall total SA was computed as the

total over all regional SA values and overall average CT was computed

by weighting regional CT values by the corresponding regional

surface size.

2.4 | Statistical analysis

All statistical analyses were performed in R using OpenMx, a matrix-

based structural equation modeling package (Boker et al., 2011;

Neale & Cardon, 1992). Phenotypes of interest included: (a) overall

average CT, (b) total SA, (c) regional CT in 78 ROIs, and (d) regional SA

in 78 ROIs. Univariate analyses were performed using a classical ACE

model, which allows for the decomposition of the observed pheno-

typic variance into variance explained by additive genetic (a2), shared

environmental (c2), and unique environmental (e2) components. Maxi-

mum likelihood was used to generate estimates of model parameters

and to perform hypothesis testing via the likelihood ratio test (Schmitt

et al., 2008). The significance of genetic and shared environmental

effects was assessed by removing a parameter of interest and compar-

ing the resulting change in the maximum log-likelihood of the submo-

del against the original model, or the likelihood ratio test (LRT). The

LRT asymptotically follows a χ2 distribution, with degrees of freedom

equal to the difference in the number of free parameters (Neale &

Cardon, 1992) under the null hypothesis. For hypothesis tests on vari-

ance components, p-values were adjusted to account for boundary

constraints of the ACE model (Dominicus, Skrondal, Gjessing, Peder-

sen, & Palmgren, 2006).

Bivariate Cholesky decomposition models were used to identify

common genetic and environmental determinants between global

CT, SA, and ICV, between regional CT measures, and between

regional SA measures. The Cholesky decomposition model allows

for the covariance between two phenotypes to be segregated into

covariance resulting from either genetic or environmental sources

(Neale & Cardon, 1992). Genetic and environmental covariance

matrices were standardized to calculate the genetic and environ-

mental correlations between phenotypes. The genetic correlation

represents an estimate of the shared additive genetic effects

between two phenotypes.

In both univariate and bivariate analyses, models for regional

and total average CT were adjusted for birth weight, gestational age

at birth, age at MRI, sex, paternal education, and maternal ethnicity.

Models for regional SA were adjusted for birth weight, age at MRI

and sex. The model for total SA was adjusted for birth weight,

gestational age at birth, age at MRI, and sex. Covariates were chosen

based on output from variable selection and linear mixed effects

model results for CT and SA in a large sample of neonates (Jha et al.,

2018). To account for overall brain size, total surface area was fixed

for all regional surface area models and the cubed root of intracra-

nial volume (a sum of gray matter, white matter, and cerebrospinal

fluid) was fixed in the models for average and regional cortical thick-

ness. As a sensitivity analysis, univariate variance decomposition

and bivariate Cholesky decomposition models were also run without

adjusting for overall brain size. A sensitivity analysis was also per-

formed controlling for traditional variables used in adult studies:

scan parameters, brain size, age at MRI, and sex. In order to evaluate

for potential confounds due to heteroscesdacity in ROI variance

(e.g., changes in heritability of cortical thickness with age or sex), we

repeated our ACE models with additional parameters allowing for

variance components to vary with our covariates (Purcell, 2002;

Wallace et al., 2006). For all regional analyses of CT and SA, adjust-

ments for multiple comparisons were made using false discovery

rate (Benjamini & Hochberg, 2000). FDR less than 0.05 was consid-

ered significant for each region of interest.

3 | RESULTS

Cross-twin correlations for CT and SA are presented in Table 2. In

general, MZ twin pairs had increased correlations when compared

with DZ twin pairs.

3.1 | Global CT and SA

Parameter estimates and tests of significance for global CT and SA are

presented in Table 3. Overall, shared environmental influences had

small and nonsignificant impacts on global CT and SA variation. Total

SA was highly heritable, with genetic influences accounting for a large

portion of the observed variance (a2 = 0.78, p < .001). For average

CT, genetic influences accounted for a small (a2 = 0.29, p > .05) and

nonsignificant proportion of the phenotypic variance. The observed

genetic correlation between average CT and total SA was strong and

significant (rG = 0.65, p < .05, see Table 4). To understand the impact

of overall brain size on CT and SA, we also examined the heritability

of intracranial volume (ICV). Genetic influences on ICV accounted for

a significantly large amount of the total phenotypic variance

(a2 = 0.60, p < .001). Significantly high genetic correlations were

found between ICV and total SA (rG = 0.98, p < .001) and between

ICV and overall average CT (rG = 0.64, p < .05). Phenotypic (rP), com-

mon environmental (rC), and unique environmental (rE) correlations

for global measures can be found in Table 4.

3.2 | Regional CT and SA

Parameter estimates for regional CT and SA are presented in Figure 1

and provided with tests of significance in Tables 5 and 6. The p-value

and q-value thresholds were set at p < .05. For CT, regional heritabil-

ity estimates ranged from <0.01 to 0.52 with significant genetic

effects in 9 of the 78 regions. After correcting for multiple

JHA ET AL. 5001



TABLE 2 Co-twin correlations for MZ and DZ pairs

Region of interest
Cortical thickness Surface area

MZ DZ MZ DZ

Total SA – – 0.92 0.75

Average thickness 0.80 0.66 – –

Precentral_L 0.56 0.52 0.76 0.54

Precentral_R 0.63 0.49 0.82 0.56

Frontal_Sup_L 0.69 0.55 0.53 0.59

Frontal_Sup_R 0.71 0.63 0.76 0.64

Frontal_Sup_Orb_L 0.53 0.49 0.62 0.44

Frontal_Sup_Orb_R 0.59 0.51 0.65 0.61

Frontal_Mid_L 0.63 0.55 0.82 0.57

Frontal_Mid_R 0.58 0.58 0.83 0.65

Frontal_Mid_Orb_L 0.20 0.28 0.71 0.42

Frontal_Mid_Orb_R 0.53 0.31 0.78 0.55

Frontal_Inf_Oper_L 0.47 0.28 0.59 0.49

Frontal_Inf_Oper_R 0.43 0.18 0.64 0.40

Frontal_Inf_Tri_L 0.61 0.37 0.62 0.41

Frontal_Inf_Tri_R 0.37 0.30 0.72 0.39

Frontal_Inf_Orb_L 0.49 0.49 0.87 0.54

Frontal_Inf_Orb_R 0.57 0.38 0.84 0.56

Rolandic_Oper_L 0.51 0.38 0.79 0.48

Rolandic_Oper_R 0.38 0.28 0.75 0.55

Supp_Motor_Area_L 0.61 0.37 0.69 0.58

Supp_Motor_Area_R 0.50 0.44 0.78 0.60

Olfactory_L 0.22 0.22 0.55 0.24

Olfactory_R 0.29 0.30 0.67 0.24

Frontal_Sup_Medial_L 0.55 0.39 0.61 0.51

Frontal_Sup_Medial_R 0.51 0.33 0.78 0.61

Frontal_Med_Orb_L 0.25 −0.01 0.40 0.33

Frontal_Med_Orb_R 0.47 0.21 0.76 0.56

Rectus_L 0.52 0.14 0.62 0.34

Rectus_R 0.43 0.14 0.70 0.52

Insula_L 0.72 0.38 0.82 0.60

Insula_R 0.72 0.43 0.84 0.63

Cingulum_Ant_L 0.36 0.29 0.68 0.35

Cingulum_Ant_R 0.18 0.38 0.84 0.63

Cingulum_Mid_L 0.56 0.39 0.71 0.46

Cingulum_Mid_R 0.50 0.46 0.89 0.61

Cingulum_Post_L 0.32 0.04 0.70 0.30

Cingulum_Post_R 0.15 0.24 0.59 0.41

ParaHippocampal_L 0.60 0.25 0.52 0.17

ParaHippocampal_R 0.50 0.05 0.74 0.39

Calcarine_L 0.35 0.44 0.68 0.44

Calcarine_R 0.37 0.31 0.68 0.31

Cuneus_L 0.26 0.17 0.58 0.36

Cuneus_R 0.08 0.23 0.67 0.32

Lingual_L 0.30 0.41 0.74 0.56

Lingual_R 0.31 0.46 0.82 0.68

Occipital_Sup_L 0.19 0.39 0.66 0.42

Occipital_Sup_R 0.18 0.21 0.62 0.45

Occipital_Mid_L 0.50 0.49 0.74 0.58

Occipital_Mid_R 0.34 0.24 0.67 0.58

(Continues)
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comparisons, one region remained significant (right insula, see

Table 5). Genetic correlations of regional CT ranged from −1.00 to

1.00 (Figure 2a), with 83 significant relationships. No significant corre-

lations were found across regions after correcting for multiple com-

parisons. Heritability estimates for regional SA ranged from <0.01 to

0.76 with significant genetic influences in 28 of the 78 regions. Of

these, genetic influences remained significant in 7 regions after a cor-

rection for multiple comparisons (left inferior orbitofrontal cortex, left

and right insula, left and right precuneus, right supramarginal gyrus,

and right inferior temporal gyrus, see Table 6). Genetic correlations of

regional SA also ranged from −1.00 to 1.00 (Figure 2b) with 131 signif-

icant relationships. No significant correlations remained after FDR

correction. Overall, shared environmental influences had small and

nonsignificant impacts on variation in regional CT or SA.

Regional genetic correlations between CT and SA were calculated

for all 78 ROIs (see Figure 3). Results ranged from −1.00 to 1.00, with

65 of the 78 ROIs showing positive correlations and 7 showing signifi-

cant genetic correlations. After correcting for multiple comparisons,

significant genetic relationships remained between CT and SA in the

right postcentral gyrus (rG = 1.00) and left precuneus (rG = 0.67).

3.3 | Secondary analyses

In a secondary analysis, genetic influences on CT and SA were exam-

ined without adjusting for overall brain size (Figure 4). For regional

CT, heritability estimates ranged from <0.01 to 0.56 and were signifi-

cant in 13 of the 78 ROIs. Two significant genetic influences remained

after FDR correction (left and right insula, see Supporting Information

Table S2). For regional SA, heritability estimates ranged from <0.01 to

0.83 and were significant in 65 of the 78 ROIs. After correction for

TABLE 2 (Continued)

Region of interest
Cortical thickness Surface area

MZ DZ MZ DZ

Occipital_Inf_L 0.45 0.17 0.55 0.47

Occipital_Inf_R 0.55 0.33 0.59 0.48

Fusiform_L 0.53 0.32 0.59 0.58

Fusiform_R 0.53 0.41 0.69 0.50

Postcentral_L 0.65 0.42 0.70 0.47

Postcentral_R 0.64 0.44 0.80 0.62

Parietal_Sup_L 0.52 0.47 0.48 0.40

Parietal_Sup_R 0.28 0.37 0.86 0.68

Parietal_Inf_L 0.37 0.30 0.66 0.51

Parietal_Inf_R 0.43 0.30 0.69 0.57

SupraMarginal_L 0.33 0.15 0.55 0.35

SupraMarginal_R 0.32 0.33 0.79 0.56

Angular_L 0.17 0.02 0.60 0.32

Angular_R 0.50 0.36 0.69 0.54

Precuneus_L 0.49 0.20 0.86 0.52

Precuneus_R 0.30 0.22 0.88 0.73

Paracentral_Lobule_L 0.56 0.25 0.60 0.33

Paracentral_Lobule_R 0.36 0.12 0.68 0.47

Heschl_L 0.38 0.13 0.60 0.07

Heschl_R 0.58 0.30 0.60 0.31

Temporal_Sup_L 0.45 0.23 0.80 0.53

Temporal_Sup_R 0.55 0.17 0.84 0.67

Temporal_Pole_Sup_L 0.43 0.17 0.80 0.57

Temporal_Pole_Sup_R 0.25 0.26 0.75 0.65

Temporal_Mid_L 0.46 0.29 0.76 0.58

Temporal_Mid_R 0.59 0.43 0.86 0.61

Temporal_Pole_Mid_L 0.36 0.08 0.73 0.36

Temporal_Pole_Mid_R 0.51 0.29 0.75 0.51

Temporal_Inf_L 0.67 0.25 0.73 0.45

Temporal_Inf_R 0.55 0.37 0.87 0.63

TABLE 3 Univariate ACE model maximum likelihood parameter

estimates and p-values for global measures

Region of
interest

Variance
components

Variance component
hypothesis test (p-values)

a2 c2 e2 A C A and C

Total SA 0.78 0.11 0.10 <.001 .343 <.001

Average CT 0.29 0.18 0.53 .439 .500 <.001

ICV 0.60 0.23 0.17 <.001 .124 <.001

A = test of genetic effects; C = test of shared environmental effects;
A and C = test of familial effects (genetic + environmental). Bold/italicized
text indicates p-values below 0.05.

JHA ET AL. 5003



multiple comparisons, estimates were significant in 64 of the 78 ROIs

(Supporting Information Table S3). Genetic correlations for regional

CT and regional SA ranged from −1.00 to 1.00 (Supporting Informa-

tion Figures S1 and S2). For regional CT, 196 significant correlations

were found and one (between the left and right insula, rG = 0.95)

remained after FDR correction. For regional SA, there were 2,240 sig-

nificant correlations across various regions of interest and 2,106 sur-

vived FDR correction. Shared environmental influences remained

small and nonsignificant for both regional CT and SA.

Most twin studies of CT and SA are performed during childhood,

adolescence, and adulthood, and often do not have access to detailed

prenatal demographics that may serve as important covariates. There-

fore, to be consistent with analyses performed in the literature, we

performed an additional sensitivity analysis controlling for variables

most often used as covariates at later ages: brain size, age, sex, and

scanner parameters (Figure 5). We observed significant genetic and

common environmental influences on total SA (0.30 and 0.62, respec-

tively) and on ICV (0.38 and 0.52, respectively). There were no signifi-

cant genetic or common environmental influences on CT (Supporting

Information Table S4). Genetic correlations were 0.65 between CT

and SA, 0.97 between total SA and ICV, and 0.69 between average

CT and ICV (Supporting Information Table S5). For regional CT,

heritability estimates ranged from <0.01 to 0.57 and were significant

in 11 of the 78 ROIs (Supporting Information Table S6). One signifi-

cant genetic influence remained after FDR correction (right insula).

For regional SA, heritability estimates ranged from <0.01 to 0.73 and

were significant in 28 of the 78 ROIs (Supporting Information

Table S7). After correction for multiple comparisons, estimates were

significant in the same 7 ROIs found in our primary analysis (left infe-

rior orbitofrontal cortex, left and right insula, left and right precuneus,

right supramarginal gyrus, and right inferior temporal gyrus). Genetic

correlations for regional CT and regional SA ranged from −1.00 to

1.00 and one genetic relationship was significant for CT after FDR

correction (left and right insula, rG = 0.92, Supporting Information

Figures S3 and S4).

Additive genetic x covariate interactions were not statistically sig-

nificant for the vast majority of ROI x covariate combinations and did

not substantially alter our primary results.

4 | DISCUSSION

Utilizing a sample of 360 twin neonates, we performed the first quan-

titative genetic study of infant CT and SA. Our results revealed strong

FIGURE 1 Genetic, common environmental, and unique environmental influences on neonatal (a) cortical thickness and (b) surface area for

78 cortical regions. Genetic influences are displayed in blue, common environmental influences are displayed in orange, and unique environmental
influences are displayed in gray. Genetic influences are also projected onto the cortical surface. Subcortical regions are in gray and were not
analyzed

TABLE 4 Bivariate ACE model maximum likelihood parameter estimates and p-values for global measures

Regions of interest Correlation coefficient ROI–ROI covariance hypothesis test (p-values)

1 2 rP rG rC rE A C E A and C A, C, and E

Total SA Average CT 0.32 0.65 0.30 −0.20 .005 .463 <.001 <.001 <.001

Total SA ICV 0.86 0.98 0.82 0.50 <.001 .335 .002 <.001 <.001

Average CT ICV 0.58 0.64 0.79 0.39 .025 .677 .132 <.001 <.001

A = test of genetic covariance; C = test of shared environmental covariance; A and C = test of familial covariance (genetic + environmental); A, C, and E =
test of all and any covariance. Bold/italicized text indicates p-values below 0.05.
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TABLE 5 Univariate ACE model maximum likelihood parameter estimates and p-values for regional CT measures

Region of interest
Variance components Hypothesis test p-values Hypothesis test Q-values

a2 c2 e2 A C A and C A C A and C

Precentral_L 0.12 0.12 0.77 .349 .290 .014 .500 .500 .034

Precentral_R 0.27 0.07 0.66 .183 .367 .002 .451 .500 .007

Frontal_Sup_L 0.04 0.24 0.71 .439 .119 <.001 .500 .500 .003

Frontal_Sup_R <0.01 0.37 0.63 .500 .018 <.001 .500 .500 <.001

Frontal_Sup_Orb_L <0.01 0.27 0.73 .500 .070 .001 .500 .500 .004

Frontal_Sup_Orb_R 0.28 0.08 0.64 .153 .350 <.001 .451 .500 .003

Frontal_Mid_L <0.01 0.19 0.81 .500 .093 .020 .500 .500 .041

Frontal_Mid_R <0.01 0.24 0.76 .500 .027 .003 .500 .500 .011

Frontal_Mid_Orb_L <0.01 <0.01 1.00 .500 .488 .500 .500 .500 .500

Frontal_Mid_Orb_R 0.29 <0.01 0.71 .126 .500 .017 .439 .500 .037

Frontal_Inf_Oper_L 0.18 <0.01 0.82 .182 .500 .101 .451 .500 .147

Frontal_Inf_Oper_R 0.03 <0.01 0.97 .390 .500 .481 .500 .500 .500

Frontal_Inf_Tri_L 0.28 <0.01 0.72 .055 .500 .005 .363 .500 .014

Frontal_Inf_Tri_R 0.13 <0.01 0.87 .259 .500 .209 .499 .500 .254

Frontal_Inf_Orb_L <0.01 0.18 0.82 .500 .130 .025 .500 .500 .049

Frontal_Inf_Orb_R 0.14 <0.01 0.86 .267 .500 .228 .500 .500 .273

Rolandic_Oper_L 0.21 0.12 0.67 .218 .288 <.001 .463 .500 .003

Rolandic_Oper_R 0.15 <0.01 0.85 .210 .500 .174 .463 .500 .218

Supp_Motor_Area_L 0.29 0.03 0.68 .174 .440 .005 .451 .500 .014

Supp_Motor_Area_R <0.01 0.23 0.77 .500 .090 .005 .500 .500 .014

Olfactory_L 0.06 0.10 0.84 .426 .329 .092 .500 .500 .140

Olfactory_R <0.01 0.06 0.94 .500 .287 .355 .500 .500 .407

Frontal_Sup_Medial_L <0.01 0.05 0.95 .500 .307 .395 .500 .500 .439

Frontal_Sup_Medial_R 0.10 <0.01 0.90 .166 .500 .312 .451 .500 .363

Frontal_Med_Orb_L <0.01 <0.01 1.00 .500 .500 .500 .500 .500 .500

Frontal_Med_Orb_R 0.23 <0.01 0.77 .126 .500 .059 .439 .500 .095

Rectus_L 0.25 <0.01 0.75 .036 .500 .013 .338 .500 .033

Rectus_R 0.16 <0.01 0.84 .179 .500 .155 .451 .500 .201

Insula_L 0.40 <0.01 0.60 .003 .500 <.001 .106 .500 .003

Insula_R 0.52 <0.01 0.48 <.001 .500 <.001 .045 .500 <.001

Cingulum_Ant_L 0.23 0.08 0.70 .220 .358 .004 .463 .500 .011

Cingulum_Ant_R <0.01 0.19 0.81 .500 .074 .020 .500 .500 .041

Cingulum_Mid_L 0.40 <0.01 0.60 .038 .500 <.001 .338 .500 .001

Cingulum_Mid_R 0.02 0.22 0.76 .475 .163 .003 .500 .500 .010

Cingulum_Post_L <0.01 <0.01 1.00 .487 .500 .500 .500 .500 .500

Cingulum_Post_R <0.01 0.12 0.88 .500 .192 .148 .500 .500 .195

ParaHippocampal_L 0.42 <0.01 0.58 .014 .500 <.001 .204 .500 .003

ParaHippocampal_R 0.31 <0.01 0.69 .015 .500 .021 .204 .500 .042

Calcarine_L <0.01 0.18 0.82 .500 .147 .029 .500 .500 .052

Calcarine_R 0.24 <0.01 0.76 .223 .500 .043 .463 .500 .074

Cuneus_L 0.07 0.07 0.85 .404 .376 .130 .500 .500 .180

Cuneus_R <0.01 0.13 0.87 .500 .204 .102 .500 .500 .147

Lingual_L <0.01 0.25 0.75 .500 .053 .002 .500 .500 .008

Lingual_R 0.05 0.25 0.71 .446 .117 <.001 .500 .500 .003

Occipital_Sup_L <0.01 0.19 0.81 .500 .086 .017 .500 .500 .037

Occipital_Sup_R <0.01 0.12 0.88 .500 .211 .148 .500 .500 .195

Occipital_Mid_L 0.02 0.20 0.78 .468 .181 .008 .500 .500 .021

Occipital_Mid_R 0.06 <0.01 0.94 .252 .500 .400 .498 .500 .439

Occipital_Inf_L 0.17 <0.01 0.83 .146 .500 .183 .451 .500 .225

Occipital_Inf_R 0.41 <0.01 0.59 .038 .500 <.001 .338 .500 .003

(Continues)
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genetic influences on total SA and significant genetic overlap between

CT and SA. These findings provide a deeper understanding of CT and

SA development and contribute critical insight into how genetic influ-

ences shape cortical structure across the human lifespan.

We found that genetic influences determine a significant portion

of individual differences in neonatal total SA. Specifically, when control-

ling for important obstetric history variables, we observed a high herita-

bility estimate of 0.78. During the early postnatal period, cortical SA

expands dramatically, with 0.50% daily growth in the first month (Jha

et al., 2018) and average growth of 114% in the first 2 years (Lyall

et al., 2015). Genetic influences driving total SA during early develop-

ment likely control the tangential expansion of the cortex by impacting

symmetric divisions of ventricular radial glia during early neurogenesis

and outer radial glia during late neurogenesis (Nowakowski et al., 2016;

Rakic, 2009). Genes involved in the development of sulci, gyri, and

cortico-cortical connectivity may also impact individual differences in

total SA observed in our study (Lewitus, Kelava, & Huttner, 2013).

Interestingly, when controlling only for variables most often used

in adult studies (age, sex, and scanning protocol) the heritability esti-

mate remained significant but was greatly reduced. Compared with

adult twin and family studies, which report high estimates of 0.89 and

0.71, respectively (Panizzon et al., 2009; Winkler et al., 2010), genetic

influences seem to play a significant but smaller role in explaining indi-

vidual differences in total SA at birth. Moreover, while traditional

adult studies report no effects of the common environment, we found

that common environmental influences play a substantial role in

explaining the variation observed in neonatal total SA. We note that

significant influences of the common environment largely disappear

when controlling for obstetric variables, suggesting that strong envi-

ronmental influences are likely driven by the impacts of gestational

age at birth and birth weight on neonatal brain structure. A recent

study of the EBDS sample revealed that both gestational age at birth

and birth weight are important predictors of neonatal total SA (Jha

et al., 2018). Taken together, results from both analyses reveal that

genetic influences are important determinants of neonatal SA but her-

itability estimates should be interpreted with caution as they may vary

based on covariates.

In contrast to total SA, genetic influences did not explain a signifi-

cant proportion of the variation observed in neonatal average

CT. Moreover, the observed heritability in our neonatal sample (0.29)

TABLE 5 (Continued)

Region of interest
Variance components Hypothesis test p-values Hypothesis test Q-values

a2 c2 e2 A C A and C A C A and C

Fusiform_L 0.31 <0.01 0.69 .107 .500 .007 .439 .500 .018

Fusiform_R 0.19 0.26 0.56 .242 .083 <.001 .491 .500 <.001

Postcentral_L 0.35 <0.01 0.65 .078 .500 .002 .363 .500 .007

Postcentral_R 0.27 <0.01 0.73 .113 .500 .016 .439 .500 .037

Parietal_Sup_L 0.02 0.27 0.71 .467 .114 <.001 .500 .500 .003

Parietal_Sup_R <0.01 0.12 0.88 .500 .050 .130 .500 .500 .180

Parietal_Inf_L 0.18 <0.01 0.82 .194 .500 .095 .463 .500 .141

Parietal_Inf_R <0.01 0.11 0.89 .500 .286 .163 .500 .500 .207

SupraMarginal_L 0.13 <0.01 0.87 .318 .500 .256 .500 .500 .301

SupraMarginal_R 0.17 0.06 0.78 .311 .400 .046 .500 .500 .078

Angular_L <0.01 <0.01 1.00 .500 .500 .500 .500 .500 .500

Angular_R 0.24 <0.01 0.76 .173 .500 .025 .451 .500 .049

Precuneus_L 0.22 <0.01 0.78 .097 .500 .048 .424 .500 .078

Precuneus_R 0.17 <0.01 0.83 .219 .500 .132 .463 .500 .180

Paracentral_Lobule_L 0.32 <0.01 0.68 .063 .500 .002 .363 .500 .008

Paracentral_Lobule_R 0.03 <0.01 0.97 .385 .500 .479 .500 .500 .500

Heschl_L 0.08 <0.01 0.92 .300 .500 .377 .500 .500 .426

Heschl_R 0.42 <0.01 0.58 .008 .500 <.001 .202 .500 .003

Temporal_Sup_L 0.31 <0.01 0.69 .075 .500 .008 .363 .500 .021

Temporal_Sup_R 0.22 <0.01 0.78 .054 .500 .069 .363 .500 .109

Temporal_Pole_Sup_L 0.14 0.04 0.82 .325 .429 .087 .500 .500 .134

Temporal_Pole_Sup_R <0.01 0.18 0.82 .500 .130 .027 .500 .500 .050

Temporal_Mid_L 0.25 <0.01 0.75 .075 .500 .030 .363 .500 .053

Temporal_Mid_R 0.37 <0.01 0.63 .064 .500 <.001 .363 .500 .004

Temporal_Pole_Mid_L 0.06 <0.01 0.94 .274 .500 .418 .500 .500 .452

Temporal_Pole_Mid_R 0.32 <0.01 0.68 .071 .500 .002 .363 .500 .008

Temporal_Inf_L 0.35 <0.01 0.65 .015 .500 <.001 .204 .500 .004

Temporal_Inf_R 0.26 <0.01 0.74 .179 .500 .027 .451 .500 .050

A = test of genetic effects; C = test of shared environmental effects; A and C = test of familial effects (genetic + environmental). Bold/italicized text indi-
cates p-values (unadjusted for multiple comparisons) and q - values (adjusted for multiple comparisons) below 0.05.
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TABLE 6 Univariate ACE model maximum likelihood parameter estimates and p-values for regional SA measures

Region of interest
Variance components Hypothesis test p-values Hypothesis test Q-values

a2 c2 e2 A C A and C A C A and C

Precentral_L 0.27 0.10 0.63 .168 .316 <.001 .247 .500 .001

Precentral_R 0.18 0.18 0.64 .252 .196 <.001 .312 .500 <.001

Frontal_Sup_L 0.03 0.18 0.79 .466 .204 .014 .500 .500 .021

Frontal_Sup_R 0.23 0.11 0.66 .209 .300 .001 .281 .500 .002

Frontal_Sup_Orb_L 0.32 <0.01 0.68 .049 .500 .004 .137 .500 .008

Frontal_Sup_Orb_R 0.02 <0.01 0.98 .465 .500 .495 .500 .500 .500

Frontal_Mid_L 0.38 <0.01 0.62 .010 .500 .001 .065 .500 .003

Frontal_Mid_R 0.29 0.18 0.52 .119 .159 <.001 .201 .500 <.001

Frontal_Mid_Orb_L 0.23 <0.01 0.77 .115 .500 .049 .200 .500 .065

Frontal_Mid_Orb_R 0.30 <0.01 0.70 .019 .500 .008 .083 .500 .014

Frontal_Inf_Oper_L 0.08 <0.01 0.92 .316 .500 .372 .368 .500 .397

Frontal_Inf_Oper_R 0.05 <0.01 0.95 .353 .500 .466 .405 .500 .484

Frontal_Inf_Tri_L 0.11 <0.01 0.89 .244 .500 .288 .312 .500 .321

Frontal_Inf_Tri_R 0.31 <0.01 0.69 .073 .500 .008 .168 .500 .014

Frontal_Inf_Orb_L 0.56 <0.01 0.44 <.001 .500 <.001 .003 .500 <.001

Frontal_Inf_Orb_R 0.51 <0.01 0.49 .012 .500 <.001 .069 .500 <.001

Rolandic_Oper_L 0.35 <0.01 0.65 .024 .500 .002 .089 .500 .004

Rolandic_Oper_R 0.43 <0.01 0.57 .039 .500 <.001 .117 .500 .001

Supp_Motor_Area_L 0.35 0.06 0.58 .095 .374 <.001 .178 .500 <.001

Supp_Motor_Area_R 0.18 0.14 0.68 .275 .253 .001 .330 .500 .003

Olfactory_L 0.13 <0.01 0.87 .145 .500 .239 .231 .500 .270

Olfactory_R 0.28 <0.01 0.72 .023 .500 .015 .089 .500 .021

Frontal_Sup_Medial_L 0.31 <0.01 0.69 .077 .500 .011 .170 .500 .018

Frontal_Sup_Medial_R 0.08 <0.01 0.92 .249 .500 .384 .312 .500 .405

Frontal_Med_Orb_L <0.01 0.08 0.92 .500 .310 .301 .500 .500 .326

Frontal_Med_Orb_R 0.20 0.12 0.68 .247 .275 .001 .312 .500 .003

Rectus_L 0.22 <0.01 0.78 .088 .500 .090 .176 .500 .107

Rectus_R 0.04 0.13 0.83 .447 .281 .054 .498 .500 .069

Insula_L 0.76 <0.01 0.24 <.001 .500 <.001 .001 .500 <.001

Insula_R 0.64 <0.01 0.36 <.001 .500 <.001 .005 .500 <.001

Cingulum_Ant_L 0.24 <0.01 0.76 .069 .500 .063 .168 .500 .077

Cingulum_Ant_R 0.33 <0.01 0.67 .020 .500 .013 .083 .500 .020

Cingulum_Mid_L 0.32 <0.01 0.68 .096 .500 .009 .178 .500 .015

Cingulum_Mid_R 0.37 <0.01 0.63 .017 .500 .003 .083 .500 .006

Cingulum_Post_L 0.29 <0.01 0.71 .032 .500 .018 .104 .500 .026

Cingulum_Post_R 0.11 <0.01 0.88 .374 .495 .294 .423 .500 .324

ParaHippocampal_L 0.18 <0.01 0.82 .080 .500 .128 .173 .500 .147

ParaHippocampal_R 0.30 0.11 0.59 .148 .285 <.001 .231 .500 <.001

Calcarine_L 0.28 0.24 0.48 .110 .090 <.001 .195 .500 <.001

Calcarine_R 0.49 <0.01 0.51 .029 .500 <.001 .098 .500 <.001

Cuneus_L 0.18 0.03 0.79 .280 .446 .056 .331 .500 .070

Cuneus_R 0.26 <0.01 0.74 .058 .500 .037 .152 .500 .050

Lingual_L 0.54 <0.01 0.46 .019 .489 <.001 .083 .500 <.001

Lingual_R 0.21 0.34 0.46 .166 .027 <.001 .247 .500 <.001

Occipital_Sup_L 0.45 <0.01 0.55 .006 .500 <.001 .057 .500 <.001

Occipital_Sup_R 0.47 <0.01 0.53 .019 .500 <.001 .083 .500 <.001

Occipital_Mid_L 0.50 <0.01 0.50 .007 .500 <.001 .057 .500 <.001

Occipital_Mid_R <0.01 0.24 0.76 .500 .103 .002 .500 .500 .005

Occipital_Inf_L <0.01 0.14 0.86 .500 .257 .098 .500 .500 .114

Occipital_Inf_R 0.23 <0.01 0.77 .175 .500 .033 .252 .500 .046

(Continues)

JHA ET AL. 5007



was smaller compared with heritability estimates (0.81and 0.69)

reported in adults (Panizzon et al., 2009; Winkler et al., 2010). Imaging

studies have revealed significant growth in CT in the neonatal period

(Jha et al., 2018; Lyall et al., 2015) and continuing in the first year of

life (Remer et al., 2017). Rapid thickening of the cortex peaks during

this period and is followed by graduate linear decreases throughout

childhood, adolescence, and adulthood (Ducharme et al., 2016; Wier-

enga, Langen, Oranje, & Durston, 2014). We note that for CT, myeli-

nation of the underlying WM may be of particular importance as it

affects tissue contrast at the WM/GM boundary. This may have

important implications in terms of image processing (Walhovd, Fjell,

Giedd, Dale, & Brown, 2017) and heritability outcomes. Additionally,

adolescent and adult twin studies reveal significant genetic correla-

tions between GM thickness and white matter connectivity

(Kochunov et al., 2011; Shen et al., 2016) suggesting that heritability

of neonatal CT may be related to genes driving neonatal WM.

In general, our findings suggest that genetic influences on average

CT and total SA may increase between the neonatal period and adult-

hood. In adults, individual differences in average CT and total SA may

be related to genes impacting the number and size of neurons, glia,

and synaptic machinery (De Graaf-Peters & Hadders-Algra, 2006;

Rakic, 2009) and pathways controlling processes of synaptic pruning,

myelination, and aging (Stiles & Jernigan, 2010). A potential increase

in heritability for total SA and average CT between neonates and

adults could also be interpreted as canalization (Gilmore et al., 2010;

Lenroot & Giedd, 2008), the concept that heritability of a phenotype

will increase as various genetic influences act over development under

expected environmental conditions. To best understand how early

postnatal genetic influences compare to genetic influences during

later ages, heritability studies of total SA and average CT should be

performed during late infancy, childhood, and early adolescence.

Our most remarkable and unexpected finding regarding total SA

and average CT was the strong genetic overlap between these global

measures. We found that the shared genetic effect between neonatal

CT and total SA is high (rG = 0.65). Thus far, studies comparing CT

and SA in adults have found little to no genetic associations between

the two phenotypes (Panizzon et al., 2009; Winkler et al., 2010).

Based on such reports, it has been suggested that CT and SA are

driven by two distinct sets of genetic influences related to distinct

developmental events during early prenatal life. In contrast to these

TABLE 6 (Continued)

Region of interest
Variance components Hypothesis test p-values Hypothesis test Q-values

a2 c2 e2 A C A and C A C A and C

Fusiform_L 0.29 0.05 0.66 .145 .414 .001 .231 .500 .001

Fusiform_R 0.26 <0.01 0.74 .154 .500 .018 .236 .500 .026

Postcentral_L 0.36 <0.01 0.64 .053 .500 <.001 .142 .500 .001

Postcentral_R 0.35 <0.01 0.65 .069 .500 .003 .168 .500 .006

Parietal_Sup_L <0.01 <0.01 1.00 .500 .500 .500 .500 .500 .500

Parietal_Sup_R 0.50 0.03 0.47 .029 .430 <.001 .098 .500 <.001

Parietal_Inf_L 0.02 0.29 0.69 .480 .073 <.001 .500 .500 <.001

Parietal_Inf_R 0.19 0.07 0.74 .256 .376 .008 .312 .500 .014

SupraMarginal_L <0.01 <0.01 1.00 .500 .500 .500 .500 .500 .500

SupraMarginal_R 0.40 <0.01 0.60 .003 .500 <.001 .041 .500 .001

Angular_L 0.21 <0.01 0.79 .072 .500 .064 .168 .500 .077

Angular_R 0.22 0.08 0.70 .212 .357 .001 .281 .500 .003

Precuneus_L 0.58 <0.01 0.42 <.001 .500 <.001 .006 .500 <.001

Precuneus_R 0.63 <0.01 0.37 .001 .500 <.001 .008 .500 <.001

Paracentral_Lobule_L 0.43 <0.01 0.57 .012 .500 .001 .069 .500 .003

Paracentral_Lobule_R 0.32 <0.01 0.68 .046 .500 .003 .134 .500 .006

Heschl_L 0.39 <0.01 0.61 .007 .500 .002 .057 .500 .005

Heschl_R 0.21 <0.01 0.79 .107 .500 .051 .194 .500 .066

Temporal_Sup_L 0.39 0.04 0.57 .085 .426 <.001 .176 .500 <.001

Temporal_Sup_R 0.44 <0.01 0.56 .039 .500 <.001 .117 .500 <.001

Temporal_Pole_Sup_L 0.23 0.10 0.67 .206 .314 .001 .281 .500 .002

Temporal_Pole_Sup_R 0.26 0.04 0.70 .184 .423 .003 .256 .500 .006

Temporal_Mid_L 0.34 <0.01 0.66 .008 .500 .003 .059 .500 .006

Temporal_Mid_R 0.31 <0.01 0.69 .132 .500 .011 .218 .500 .017

Temporal_Pole_Mid_L 0.24 0.13 0.63 .184 .275 <.001 .256 .500 <.001

Temporal_Pole_Mid_R 0.22 <0.01 0.78 .090 .500 .055 .176 .500 .069

Temporal_Inf_L 0.24 <0.01 0.76 .088 .500 .045 .176 .500 .061

Temporal_Inf_R 0.58 <0.01 0.42 .004 .500 <.001 .048 .500 <.001

A = test of genetic effects; C = test of shared environmental effects; A and C = test of familial effects (genetic + environmental). Bold/italicized text indi-
cates p-values (unadjusted for multiple comparisons) and q - values (adjusted for multiple comparisons) below 0.05.
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FIGURE 2 Heatmap of genetic correlations between 78 ROIs of (a) neonatal cortical thickness and (b) neonatal surface area. Dendrograms are

displayed on each heatmap to present the results from a hierarchal cluster analysis. Clusters are visually displayed on the neonatal brain surface
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findings, our twin neonate study reveals that early genetic influences

on CT and SA are actually similar and overlapping. The association we

observe between total SA and average CT is likely reflective of broad-

ranging genetic influences that control general molecular mechanisms

involved in cortical development and those which coordinate the tan-

gential and radial expansion during the fetal and early postnatal

periods (Silbereis et al., 2016). In fact, developmental studies in

rodents reveal that many genes involved in cortical patterning or the

proliferation of founder cells also play a role in determining the thick-

ness of the cortex by controlling neuron number and size (Georgala,

Manuel, & Price, 2011; Korada, Zheng, Basilico, Schwartz, & Vaccar-

ino, 2002). Genetic overlap between CT and SA is also evident region-

ally across the neonatal cortex, with about 60% of ROIs showing

genetic correlations of 0.3 or above. Our assessment of neonatal CT

FIGURE 3 Genetic correlations (rG) between neonatal cortical thickness and surface area for each ROI projected onto the cortical surface.

Subcortical regions are in gray and were not analyzed

FIGURE 4 Genetic, common environmental, and unique environmental influences for regional neonatal (a) cortical thickness and (b) surface area

without adjustments for global brain measures. Genetic influences are displayed in blue, common environmental influences are displayed in
orange, and unique environmental influences are displayed in gray
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and SA serves as the earliest reported snapshot of genetic effects on

brain structure and provides evidence of a dynamic genetic relation-

ship between these two features across different periods of develop-

ment. Additionally, findings suggest that differences in CT and SA

observed in adult studies may not be reflective of fetal differences in

radial and tangential expansion of the cortex but rather may be influ-

enced by cellular and genetic processes implicated in myelination, syn-

aptic pruning, or neuronal degeneration. To better understand the

genetic relationship between CT and SA during the prenatal period,

comparable fetal MRI studies of global cortical structure are critical.

Moreover, longitudinal studies of global cortical structure from

infancy to adulthood will provide insight into the genetic association

of CT and SA across the lifespan.

At the regional level, genetic influences accounted for <1 to 76%

of variation in SA and <1% to 52% of the variation in CT across the

cortex. In adult samples, Panizzon et al. (2009) found genetic influ-

ences ranging from 3 to 74% for regional SA and from 20 to 76% for

regional CT and Winkler et al. (2010) found genetic influences ranging

from 17 to 76% regional SA and from 6 to 73% for regional CT. When

comparing our findings to these studies, we note that genetic influ-

ences during infancy explain a smaller percent of the total phenotypic

variation in CT and SA. Moreover, while we observe considerable het-

erogeneity in regional heritability estimates, genetic influences remain

largely nonsignificant in our sample. The exceptions are the heritabil-

ity estimates for SA in the insular cortex and precuneus, which are

similar to those found in adults and in the right supramarginal, right

inferior temporal, and left inferior orbitofrontal gyri.

Furthermore, when examining heritability estimates across all

78 ROIs, we did not observe clear regional patterns based on struc-

tural, functional, or maturational organization. Nor did we observe

meaningful patterns of regionalization when examining the genetic

correlations among regions of CT and SA. Together, these results sug-

gest that individual differences in CT and SA are likely driven by a

common set of underlying genetic factors influencing cortical struc-

ture at the global level. This is in contrast to twin studies of regional

CT in older populations which reveal that regional heritability esti-

mates align with maturational patterns. Specifically, in early childhood,

CT in primary sensory and motor regions is highly heritable and at

older ages, heritability is higher in dorsal prefrontal and temporal lobes

(Lenroot et al., 2009). Moreover, twin studies of genetic regionaliza-

tion in older adults have found up to 12 genetically similar clusters.

Genetic divisions of SA follow an anterior–posterior division with spa-

tially contiguous regions being genetically correlated. Genetic divi-

sions of CT follow a basic dorsal-ventral pattern and are driven by

similarities of maturational timing (Chen et al., 2011, 2012, 2013).

While our cluster analysis suggests that there are groupings of

genetic covariance across the neonatal brain, these groupings do not

have obvious biological correlates. For primary CT, genetic clusters are

visible in the right frontal lobe, bilateral medial occipital lobe, and bilat-

eral cingulate gyrus. For primary SA, genetic clustering is observed

within the temporal lobe and precuneus as well as the medial occipital

lobe. Overall however, gradients of gene expression driving cortical

arealization during adulthood do not seem to contribute to clear

anterior–posterior or dorsal-ventral distinctions across the neonatal

FIGURE 5 Genetic, common environmental, and unique environmental influences for regional neonatal (a) cortical thickness and (b) surface area

with adjustments for brain size, age, sex, and scanner parameters. Genetic influences are displayed in blue, common environmental influences are
displayed in orange, and unique environmental influences are displayed in gray
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cortex. Additionally, while we observed both positive and negative

genetic correlations, neither type clustered together in an exclusive

manner when hierarchical clustering analyses were performed. Instead,

both negative and positive genetic correlations were observed across

and within all regions of the cortex. The general lack of significant

regional genetic patterns in our sample is in keeping with studies of cor-

tical gene expression which suggest that there are minimal interareal

differences in gene expression across the cortex during infancy (Kang

et al., 2011; Pletikos et al., 2014; Silbereis et al., 2016). This period is

characterized by general neuronal and glial proliferation transcriptional

programs (Pletikos et al., 2014) that are involved in the construction and

maturation of neuronal circuitry and are sensitive to experience and

external inputs from the environment. Significant regional differences in

genetic studies of CT and SA observed in studies of older populations

are likely reflections of increasing interareal differences across the cor-

tex during adolescence and adulthood (Pletikos et al., 2014).

By performing the first twin study of infant CT and SA, we show

genetics are important determinants of individual differences in neo-

natal cortical structure. Our findings provide important data points

previously unavailable for the understanding of genetic contributions

to CT and SA across the lifespan. Strengths of this study include a

unique sample, extensive demographic data, and the application of

cutting-edge infant image analysis methods. Limitations of this study

are largely centered on the challenges of infant neuroimaging. While

offering many unprecedented opportunities to study neurodevelop-

ment, our pediatric population may be underpowered to detect signifi-

cant shared environmental effects. Additionally, our use of predefined

cortical regions may limit our ability to find genetic relationships

across regions of the cortex, if those relationships do not adhere to

classic anatomical boundaries. However, it should be noted that corti-

cal parcellations based on genetic data do reveal genetic divisions that

largely correspond to anatomical divisions similar to those used in the

current study (Chen et al., 2012). Future studies should focus on pur-

suing a non-biased approach of using vertex-based analysis to gener-

ate continuous maps of genetic influences on CT and SA. Moreover,

results from our analysis are based on one infant dataset and may not

be generalizable to other pediatric populations. However, because

there are no genetic investigations of CT or SA in young typically

developing infants, results from this study are highly informative.

Findings provide cortical regions to prioritize for future imaging

genetic studies and valuable targets to better understand genetic pro-

cesses that contribute to psychiatric and developmental disorders.
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