7 research outputs found

    Hippocampal connectivity patterns echo macroscale cortical evolution in the primate brain

    Get PDF
    While the hippocampus is key for human cognitive abilities, it is also a phylogenetically old cortex and paradoxically considered evolutionarily preserved. Here, we introduce a comparative framework to quantify preservation and reconfiguration of hippocampal organisation in primate evolution, by analysing the hippocampus as an unfolded cortical surface that is geometrically matched across species. Our findings revealed an overall conservation of hippocampal macro- and micro-structure, which shows anterior-posterior and, perpendicularly, subfield-related organisational axes in both humans and macaques. However, while functional organisation in both species followed an anterior-posterior axis, we observed a marked reconfiguration in the latter across species, which mirrors a rudimentary integration of the default-mode-network in non-human primates. Here we show that microstructurally preserved regions like the hippocampus may still undergo functional reconfiguration in primate evolution, due to their embedding within heteromodal association networks

    The WRKY Transcription Factor CsWRKY70 Regulates EGCG Biosynthesis by Affecting <i>CsLAR</i> and <i>CsUGT84A</i> Expressions in Tea Leaves (<i>Camellia sinensis</i>)

    No full text
    Epigallocatechin gallate (EGCG) is an important contributor to bitterness and astringency in summer tea leaves; however, the transcriptional regulatory mechanisms of EGCG biosynthesis remain unclear. In this study, EGCG content was significantly decreased after foliar spraying with nano-Se fertilizers in tea leaves. A WRKY transcription factor (TF), CsWRKY70, was found to be positively related to EGCG content. The open reading frame of CsWRKY70 was 891 bp encoding 296 amino acids. CsWRKY70 is localized to the nucleus and has transcriptional activation activity. The electrophoretic mobility shift assay indicated that CsWRKY70 can directly bind to the promoters of CsLAR and CsUGT84A containing W-box (5′-C/TTGACT/C-3′) sequences. Dual-luciferase reporter experiment verified that CsWRKY70 activated CsLAR and CsUGT84A expressions in tobacco leaves. In summary, these results demonstrated that CsWRKY70 may reduce EGCG biosynthesis by inhibiting the CsLAR and CsUGT84A expressions under nano-Se treatment. Our findings provide new insight into the regulatory mechanism of WRKY TFs involved in catechin biosynthesis and offer a theoretical basis for breeding low or high EGCG content tea cultivars

    Rate-selected growth of ultrapure semiconducting carbon nanotube arrays

    No full text
    Carbon nanotubes (CNTs) are promising candidates for smart electronic devices. However, it is challenging to mediate their bandgap or chirality from a vapor-liquid-solid growth process. Here, we demonstrate rate-selected semiconducting CNT arrays based on interlocking between the atomic assembly rate and bandgap of CNTs. Rate analysis confirms the Schulz-Flory distribution which leads to various decay rates as length increases in metallic and semiconducting CNTs. Quantitatively, a nearly ten-fold faster decay rate of metallic CNTs leads to a spontaneous purification of the predicted 99.9999% semiconducting CNTs at a length of 154 mm, and the longest CNT can be 650 mm through an optimized reactor. Transistors fabricated on them deliver a high current of 14 μA μm-1 with on/off ratio around 108 and mobility over 4000 cm2 V-1 s-1. Our rate-selected strategy offers more freedom to control the CNT purity in-situ and offers a robust methodology to synthesize perfectly assembled nanotubes over a long scale.Peer reviewe

    Altered intestinal microbiome and metabolome correspond to the clinical outcome of sepsis

    No full text
    Abstract Background The gut microbiome plays a pivotal role in the progression of sepsis. However, the specific mechanism of gut microbiota and its metabolites involved in the process of sepsis remains elusive, which limits its translational application. Method In this study, we used a combination of the microbiome and untargeted metabolomics to analyze stool samples from patients with sepsis enrolled at admission, then microbiota, metabolites, and potential signaling pathways that might play important roles in disease outcome were screened out. Finally, the above results were validated by the microbiome and transcriptomics analysis in an animal model of sepsis. Results Patients with sepsis showed destruction of symbiotic flora and elevated abundance of Enterococcus, which were validated in animal experiments. Additionally, patients with a high burden of Bacteroides, especially B. vulgatus, had higher Acute Physiology and Chronic Health Evaluation II scores and longer stays in the intensive care unit. The intestinal transcriptome in CLP rats illustrated that Enterococcus and Bacteroides had divergent profiles of correlation with differentially expressed genes, indicating distinctly different roles for these bacteria in sepsis. Furthermore, patients with sepsis exhibited disturbances in gut amino acid metabolism compared with healthy controls; namely, tryptophan metabolism was tightly related to an altered microbiota and the severity of sepsis. Conclusion Alterations in microbial and metabolic features in the gut corresponded with the progression of sepsis. Our findings may help to predict the clinical outcome of patients in the early stage of sepsis and provide a translational basis for exploring new therapies

    Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches

    No full text
    corecore