259 research outputs found
Nanoparticle-formulated siRNA targeting integrins inhibits hepatocellular carcinoma progression in mice
Integrins play an important role during development, regulating cell differentiation, proliferation and survival. Here we show that knockdown of integrin subunits slows down the progression of hepatocellular carcinoma (HCC). Using nanoparticulate delivery of short interfering RNAs targeting ÎČ1 and αv integrin subunits we downregulate all integrin receptors in hepatocytes. Short-term integrin knockdown (two weeks) does not cause apparent structural or functional perturbations of normal liver tissue. Alterations in liver morphology accumulate upon sustained integrin downregulation (seven weeks). The integrin knockdown leads to significant retardation of HCC progression, reducing proliferation and increasing tumour cell death. This tumour retardation is accompanied by reduced activation of MET oncogene as well as expression of its mature form on the cell surface. Our data suggest that transformed proliferating cells from HCC are more sensitive to knockdown of integrins than normal quiescent hepatocytes, highlighting the potential of siRNA-mediated inhibition of integrins as an anti-cancer therapeutic approach
Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates
AMP-activated protein kinase (AMPK) is a key regulator of cellular energy homeostasis, acting as a sensor of energy and nutrient status. As such, AMPK is considered a promising drug target for treatment of medical conditions particularly associated with metabolic dysfunctions. To better understand the downstream effectors and physiological consequences of AMPK activation, we have employed a chemical genetic screen in mouse primary hepatocytes in an attempt to identify novel AMPK targets. Treatment of hepatocytes with a potent and specific AMPK activator 991 resulted in identification of 65 proteins phosphorylated upon AMPK activation, which are involved in a variety of cellular processes such as lipid/glycogen metabolism, vesicle trafficking, and cytoskeleton organisation. Further characterisation and validation using mass spectrometry followed by immunoblotting analysis with phosphorylation site-specific antibodies identified AMPK-dependent phosphorylation of Gapex-5 (also known as GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1)) on Ser902 in hepatocytes and starch-binding domain 1 (STBD1) on Ser175 in multiple cells/tissues. As new promising roles of AMPK as a key metabolic regulator continue to emerge, the substrates we identified could provide new mechanistic and therapeutic insights into AMPK-activating drugs in the liver
The obesityâlinked human lncRNA AATBC stimulates mitochondrial function in adipocytes
Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesityâassociated disorders, thermogenic adipocytes are linked to cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this plasticity could help improving metabolism. Here, we show that the lncRNA Apoptosis associated transcript in bladder cancer (AATBC) is a humanâspecific regulator of adipocyte plasticity. Comparing transcriptional profiles of human adipose tissues and cultured adipocytes we discovered that AATBC was enriched in thermogenic conditions. Using primary and immortalized human adipocytes we found that AATBC enhanced the thermogenic phenotype, which was linked to increased respiration and a more fragmented mitochondrial network. Expression of AATBC in adipose tissue of mice led to lower plasma leptin levels. Interestingly, this association was also present in human subjects, as AATBC in adipose tissue was inversely correlated with plasma leptin levels, BMI, and other measures of metabolic health. In conclusion, AATBC is a novel obesityâlinked regulator of adipocyte plasticity and mitochondrial function in humans
AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues.
AS160 (Akt substrate of 160Â kDa) is a Rab GTPase-activating protein implicated in insulin control of GLUT4 (glucose transporter 4) trafficking. In humans, a truncation mutation (R363X) in one allele of AS160 decreased the expression of the protein and caused severe postprandial hyperinsulinaemia during puberty. To complement the limited studies possible in humans, we generated an AS160-knockout mouse. In wild-type mice, AS160 expression is relatively high in adipose tissue and soleus muscle, low in EDL (extensor digitorum longus) muscle and detectable in liver only after enrichment. Despite having lower blood glucose levels under both fasted and random-fed conditions, the AS160-knockout mice exhibited insulin resistance in both muscle and liver in a euglycaemic clamp study. Consistent with this paradoxical phenotype, basal glucose uptake was higher in AS160-knockout primary adipocytes and normal in isolated soleus muscle, but their insulin-stimulated glucose uptake and overall GLUT4 levels were markedly decreased. In contrast, insulin-stimulated glucose uptake and GLUT4 levels were normal in EDL muscle. The liver also contributes to the AS160-knockout phenotype via hepatic insulin resistance, elevated hepatic expression of phosphoenolpyruvate carboxykinase isoforms and pyruvate intolerance, which are indicative of increased gluconeogenesis. Overall, as well as its catalytic function, AS160 influences expression of other proteins, and its loss deregulates basal and insulin-regulated glucose homoeostasis, not only in tissues that normally express AS160, but also by influencing liver function
Rab-GTPase binding effector protein 2 (RABEP2) is a primed substrate for Glycogen Synthase kinase-3 (GSK3)
Glycogen synthase kinase-3 (GSK3) regulates many physiological processes through phosphorylation of a diverse array of substrates. Inhibitors of GSK3 have been generated as potential therapies in several diseases, however the vital role GSK3 plays in cell biology makes the clinical use of GSK3 inhibitors potentially problematic. A clearer understanding of true physiological and pathophysiological substrates of GSK3 should provide opportunities for more selective, disease specific, manipulation of GSK3. To identify kinetically favourable substrates we performed a GSK3 substrate screen in heart tissue. Rab-GTPase binding effector protein 2 (RABEP2) was identified as a novel GSK3 substrate and GSK3 phosphorylation of RABEP2 at Ser200 was enhanced by prior phosphorylation at Ser204, fitting the known consensus sequence for GSK3 substrates. Both residues are phosphorylated in cells while only Ser200 phosphorylation is reduced following inhibition of GSK3. RABEP2 function was originally identified as a Rab5 binding protein. We did not observe co-localisation of RABEP2 and Rab5 in cells, while ectopic expression of RABEP2 had no effect on endosomal recycling. The work presented identifies RABEP2 as a novel primed substrate of GSK3, and thus a potential biomarker for GSK3 activity, but understanding how phosphorylation regulates RABEP2 function requires more information on physiological roles of RABEP2
Rab11 and phosphoinositides: A synergy of signal transducers in the control of vesicular trafficking
AbstractRab11 and phosphoinositides are signal transducers able to direct the delivery of membrane components to the cell surface. Rab11 is a small GTPase that, by cycling from an active to an inactive state, controls key events of vesicular transport, while phosphoinositides are major determinants of membrane identity, modulating compartmentalized small GTPase function. By sharing common effectors, these two signal transducers synergistically direct vesicular traffic to specific intracellular membranes. This review focuses on the latest advances regarding the mechanisms that ensure the compartmentalized regulation of Rab11 function through its interaction with phosphoinositides
Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations
Drug-induced liver injury (DILI) cannot be accurately predicted by animal models. In addition, currently available in vitro methods do not allow for the estimation of hepatotoxic doses or the determination of an acceptable daily intake (ADI). To overcome this limitation, an in vitro/in silico method was established that predicts the risk of human DILI in relation to oral doses and blood concentrations. This method can be used to estimate DILI risk if the maximal blood concentration (Cmax) of the test compound is known. Moreover, an ADI can be estimated even for compounds without information on blood concentrations. To systematically optimize the in vitro system, two novel test performance metrics were introduced, the toxicity separation index (TSI) which quantifies how well a test differentiates between hepatotoxic and non-hepatotoxic compounds, and the toxicity estimation index (TEI) which measures how well hepatotoxic blood concentrations in vivo can be estimated. In vitro test performance was optimized for a training set of 28 compounds, based on TSI and TEI, demonstrating that (1) concentrations where cytotoxicity first becomes evident in vitro (EC10) yielded better metrics than higher toxicity thresholds (EC50); (2) compound incubation for 48 h was better than 24 h, with no further improvement of TSI after 7 days incubation; (3) metrics were moderately improved by adding gene expression to the test battery; (4) evaluation of pharmacokinetic parameters demonstrated that total blood compound concentrations and the 95%-population-based percentile of Cmax were best suited to estimate human toxicity. With a support vector machine-based classifier, using EC10 and Cmax as variables, the cross-validated sensitivity, specificity and accuracy for hepatotoxicity prediction were 100, 88 and 93%, respectively. Concentrations in the culture medium allowed extrapolation to blood concentrations in vivo that are associated with a specific probability of hepatotoxicity and the corresponding oral doses were obtained by reverse modeling. Application of this in vitro/in silico method to the rat hepatotoxicant pulegone resulted in an ADI that was similar to values previously established based on animal experiments. In conclusion, the proposed method links oral doses and blood concentrations of test compounds to the probability of hepatotoxicity
Is REDD1 a Metabolic Ăminence Grise?
Regulated in development and DNA damage response 1 (REDD1) has been functionally linked to the control of diverse cellular processes due, at least in part, to its ability to repress mammalian or mechanistic Target of Rapamycin (mTOR) Complex-1 (mTORC1), a key protein complex controlled by hormonal and nutrient cues. Notably, emerging evidence suggests that REDD1 also regulates several pathways involved in modulating energy balance and metabolism. Herein, we discuss evidence implicating REDD1 as a key modulator of insulin action and metabolic function, including its potential contribution to mitochondrial biology and pancreatic islet function. Collectively, the available evidence suggests that REDD1 has a more prominent role in energy homeostasis than was previously thought, and implicates REDD1 as a potential therapeutic target for treatment of metabolic disorders
Rab4b Is a Small GTPase Involved in the Control of the Glucose Transporter GLUT4 Localization in Adipocyte
Endosomal small GTPases of the Rab family, among them Rab4a, play an essential role in the control of the glucose transporter GLUT4 trafficking, which is essential for insulin-mediated glucose uptake. We found that adipocytes also expressed Rab4b and we observed a consistent decrease in the expression of Rab4b mRNA in human and mice adipose tissue in obese diabetic states. These results led us to study this poorly characterized Rab member and its potential role in glucose transport.We used 3T3-L1 adipocytes to study by imaging approaches the localization of Rab4b and to determine the consequence of its down regulation on glucose uptake and endogenous GLUT4 location. We found that Rab4b was localized in endosomal structures in preadipocytes whereas in adipocytes it was localized in GLUT4 and in VAMP2-positive compartments, and also in endosomal compartments containing the transferrin receptor (TfR). When Rab4b expression was decreased with specific siRNAs by two fold, an extent similar to its decrease in obese diabetic subjects, we observed a small increase (25%) in basal deoxyglucose uptake and a more sustained increase (40%) in presence of submaximal and maximal insulin concentrations. This increase occurred without any change in GLUT4 and GLUT1 expression levels and in the insulin signaling pathways. Concomitantly, GLUT4 but not TfR amounts were increased at the plasma membrane of basal and insulin-stimulated adipocytes. GLUT4 seemed to be targeted towards its non-endosomal sequestration compartment.Taken our results together, we conclude that Rab4b is a new important player in the control of GLUT4 trafficking in adipocytes and speculate that difference in its expression in obese diabetic states could act as a compensatory effect to minimize the glucose transport defect in their adipocytes
Endocytosis and early endosome motility in filamentous fungi.
types: REVIEWOpen Access funded by Biotechnology and Biological Sciences Research CouncilHyphal growth of filamentous fungi requires microtubule-based long-distance motility of early endosomes. Since the discovery of this process in Ustilago maydis, our understanding of its molecular basis and biological function has greatly advanced. Studies in U. maydis and Aspergillus nidulans reveal a complex interplay of the motor proteins kinesin-3 and dynein, which co-operate to support bi-directional motion of early endosomes. Genetic screening has shed light on the molecular mechanisms underpinning motor regulation, revealing Hook protein as general motor adapters on early endosomes. Recently, fascinating insight into unexpected roles for endosome motility has emerged. This includes septin filament formation and cellular distribution of the machinery for protein translation.BBSR
- âŠ