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Review
Is REDD1 a Metabolic
Éminence Grise?
Christopher Lipina1 and Harinder S Hundal1,*

Regulated in development and DNA damage response 1 (REDD1) has been
functionally linked to the control of diverse cellular processes due, at least in
part, to its ability to repress mammalian or mechanistic Target of Rapamycin
(mTOR) Complex-1 (mTORC1), a key protein complex controlled by hormonal
and nutrient cues. Notably, emerging evidence suggests that REDD1 also
regulates several pathways involved in modulating energy balance and metab-
olism. Herein, we discuss evidence implicating REDD1 as a key modulator of
insulin action and metabolic function, including its potential contribution to
mitochondrial biology and pancreatic islet function. Collectively, the available
evidence suggests that REDD1 has a more prominent role in energy homeo-
stasis than was previously thought, and implicates REDD1 as a potential thera-
peutic target for treatment of metabolic disorders.

Introduction
Type 2 diabetes mellitus (T2DM) is an increasingly common metabolic disorder characterised by
insulin resistance and hyperglycaemia, resulting in dysregulated uptake and storage of glucose
and other metabolic substrates in peripheral tissues, such as liver, adipose, and skeletal muscle
[1]. Importantly, the peptide hormone insulin acts to promote an overall hypoglycaemic response
by stimulating the uptake of glucose into peripheral tissues, such as skeletal muscle and adipose
tissue (in contrast to hepatocytes, which largely depend upon non-insulin-dependent facilitated
diffusion of glucose via the GLUT2 glucose transporter), as well as promoting its conversion into
storage molecules, such as glycogen and fat. Upon binding to its receptor, insulin triggers a
series of signalling events that stimulate the translocation of the glucose transporter, GLUT4, to
the cell membrane. Central to this process is the signalling adaptor molecule insulin receptor
substrate 1 (IRS-1), which facilitates the activation of PI3K and downstream PKB/Akt-depen-
dent signalling [1]. Notably, PKB/Akt functions as a key signalling node that facilitates many of
the metabolic actions of insulin, including the uptake of glucose and its subsequent conversion
into glycogen, through its ability to phosphorylate and inhibit the Rab GTPase-activating protein
AS160 and glycogen synthase kinase 3 (GSK3), respectively [2–4]. Consequently, alterations to
components of insulin-induced signalling, including impairment of PKB/Akt, are likely to con-
tribute to the pathogenesis of insulin resistance as well as perturbed glucose and lipid
homeostasis.

REDD1, also known as DDIT4 or RTP801, has been identified as a key stress-regulated protein
whose expression becomes elevated in response to a variety of cellular stressors, including
hypoxia, cellular iron depletion, and DNA damage [5–8]. Several studies have identified REDD1
as a potent inhibitor of mTORC1, a complex whose core proteins include the serine/threonine
protein kinase mTOR, mLST8, and the rapamycin-sensitive scaffolding protein Raptor. This
protein complex can further associate with its inhibitory proteins DEP domain-containing mTOR-
interacting protein (DEPTOR) and proline-rich Akt substrate 40 (PRAS40). mTORC1 is activated
in response to mitogens (insulin and growth factors) and nutrients (amino acids) and serves to
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coordinate the effects of such stimuli to regulate diverse cellular processes, including protein
synthesis, autophagy, and cell growth (Figures 1 and 2, Boxes 1 and 2) [6,9,10]. Current thinking
dictates that this inhibitory action is mediated through the ability of REDD1 to activate the
upstream repressor of mTORC1, known as the tuberous sclerosis complex 1 (TSC1, hamartin)/
tuberous sclerosis complex 2 (TSC2, tuberin) complex [6]. One mechanism by which REDD1
may convey its repressive action towards mTORC1 is through its reported ability to facilitate the
protein phosphatase 2A (PP2A)-mediated dephosphorylation and inactivation of the protein
kinase PKB/Akt, which functions as an upstream repressor of TSC2 (Box 1 and Figure 1) [11].
Alternatively, it has been suggested that REDD1 acts to sequester 14-3-3 proteins away from
TSC2, thereby allowing TSC2 to repress mTORC1 function (Box 1 and Figure 1) [12], although it
should be highlighted that REDD1 and 14-3-3 proteins may not physically interact as described
by previous structure-based docking and functional analyses [13]. Growing evidence suggests
that REDD1 has an important role in modulating the activities of Akt and mTOR, two protein
kinases that function to regulate cell growth and metabolism [6,7,11,14,15]. In this review, we
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Figure 1. Factors Implicated in Insulin/Growth Factor-Induced Regulation of Mammalian or Mechanistic Target of Rapamycin (mTOR) Complex-1
(mTORC1). In response to cellular stimulation by mitogens (e.g., insulin/growth factors), activation of the mTORC1 protein complex leads to phosphorylation of several
downstream targets, such as Unc-51-like autophagy-activating kinase 1 (ULK1), transcription factor EB (TFEB), S6K1, and 4EBP1, to regulate processes such as
autophagy, protein synthesis, and cell growth and proliferation. The presence of insulin/growth factors leads to increased protein kinase B (PKB/Akt) activity, which, in
turn, phosphorylates and inhibits the upstream repressor of mTORC1, known as tuberous sclerosis complex 2 (TSC2, which forms a complex with TSC1). This
consequentially reduces the GTPase-activating protein (GAP) activity of TSC2 towards the G-protein Rheb, which then accumulates in its GTP-bound active form,
thereby promoting stimulation of its target mTORC1. By contrast, following insulin/growth factor deprivation, diminished PKB/Akt activity leads to increased TSC2 GAP
activity towards Rheb and reduced mTORC1 activation. Evidence also implicates a role for regulated in development and DNA damage response 1 (REDD1) in
modulating the TSC2-Rheb-mTORC1 pathway, whereby REDD1 may act to sequester 14-3-3 proteins away from TSC2, enabling the latter to then repress Rheb activity.
Alternatively, REDD1 has been suggested to facilitate the association of protein phosphatase 2A (PP2A) with PKB/Akt, leading to inactivation of the protein kinase, which,
in turn, would promote increased TSC2 GAP activity towards Rheb and subsequent repression of mTORC1. In addition to mitogenic stimuli, amino acids also confer a
potent stimulatory effect on mTORC1 (Box 2 and Figure 2, main text). Black arrows indicate a stimulatory effect, whereas blunt red arrows indicate an inhibitory action.
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explore the evidence pertaining to the involvement of REDD1 in cellular pathways and processes
that are known to impact insulin sensitivity and energy homeostasis.

Regulation of Insulin Sensitivity by REDD1
Increasing evidence from several independent studies suggests that REDD1 functions as a key
modulator of insulin action. For example, a study by Dungan and colleagues first demonstrated
that mice deficient for REDD1 exhibited impaired glucose and insulin tolerance compared with
wild-type counterparts [16]. This coincided with a reduction in the insulin-stimulated phosphor-
ylation of PKB/Akt at its key regulatory residues Thr308/Ser473, as well as reduced IRS-1
tyrosine phosphorylation in skeletal muscle, indicative of reduced insulin sensitivity [16]. Con-
sistent with this, an independent study by Regazzetti and coworkers also reported impaired
insulin sensitivity in REDD1-silenced 3T3-L1 adipocytes, as evidenced by reduced phosphor-
ylation of PKB/Akt, as well as muted tyrosine phosphorylation of the insulin receptor and IRS-1 in
response to insulin [17]. Indeed, these findings suggest that reduced functionality of proximal
insulin receptor signalling underlies the impairment in insulin action conveyed by a loss in REDD1
function. In accord with this, the study by Regazzetti and colleagues also demonstrated the
restoration of insulin signalling by the mTORC1 inhibitor rapamycin, thereby suggesting that the
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Figure 2. Pathways Implicated in Amino Acid Modulation of Mammalian or Mechanistic Target of Rapamycin (mTOR) Complex-1 (mTORC1).
Schematic illustrates the involvement of the Rag proteins, and the Ragulator and GATOR Complexes in the lysosomal targeting and activation of mTORC1 following
amino acid provision (see Box 2 for details). In addition, other proposed factors implicated in the amino acid regulation of mTORC1 are also included (see Box 2 for
overview). Abbreviation: GEF, guanine nucleotide exchange factor.
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impaired insulin action observed in response to REDD1 deficiency is dependent upon mTOR
activity. The mTORC1 complex is known to activate negative feedback pathways that function to
downregulate IRS-1 function by promoting its serine phosphorylation [18,19]. Therefore, it is
possible that impaired insulin action observed in response to REDD1 silencing may arise due to
an aberrant increase in mTORC1/S6K-dependent negative-feedback control [20]. Several

Box 1. Key Factors Implicated in Insulin/Growth Factor Regulation of mTORC1 Activity

mTOR is an essential component of the protein complex known as mTORC1, which functions to integrate mitogenic and
nutrient signals to promote the growth and proliferation of cells under nutritionally favourable conditions (i.e., in response
to provision of growth factors and amino acids). This is mediated, to a large extent, by the ability of active mTORC1 to
phosphorylate and regulate several downstream effectors, such as p70S6 kinase 1 (S6K1) and 4E-BP1, which have
important roles in the regulation of protein synthesis (Figure 1, main text) [6,7].

From a mechanistic viewpoint, activation of mTORC1 is crucially dependent upon a small G-protein called Rheb, which,
in its GTP-loaded active form, can bind and stimulate mTORC1. The relative amounts of GTP-loaded (active) and GDP-
loaded (inactive) Rheb are determined by its intrinsic GTP hydrolysing activity, which in turn is directly modulated by the
GTPase-activating protein (GAP) activity of the tuberous sclerosis complex (TSC1/2) [85]. TSC2 is a direct substrate for
the protein kinase PKB/Akt, whose stimulation by insulin and growth factors induces phosphorylation of TSC2 and
subsequent inhibition of its GAP activity (Figure 1, main text) [9]. This results in the accumulation of active Rheb-GTP and
an associated increase in mTORC1 activity.

In comparison, inhibition of mTORC1 may, in part, be mediated through altered localisation of the TSC1/2 complex. For
example, the absence of amino acids and insulin has been shown to induce translocation of the TSC1/2 complex to the
lysosomal surface, where it acts to convert Rheb into its inactive GDP-bound form [86,87]. Conversely, provision of these
stimuli prevents lysosomal targeting of the TSC1/2 complex and maintains Rheb in its active (GTP-bound) state.
mTORC1 can also be negatively regulated by REDD1, whose expression is increased in response to cellular stresses,
such as hypoxia or iron deprivation [6,8]. Although the mechanism(s) underlying this inhibitory action are not fully
understood, it has been suggested that REDD1 acts by sequestering 14-3-3 proteins away from TSC2, thereby
permitting GAP activity of TSC2 towards its target Rheb (Figure 1, main text) [12]. Furthermore, recent work indicates that
forced expression of REDD1 promotes the association of PP2A with PKB/Akt, leading to the dephosphorylation and
inactivation of the kinase on one of its key regulatory sites (Thr308). Consequently, this would restrain PKB/Akt-mediated
phosphorylation and inhibition of TSC2, resulting in the downstream inactivation of Rheb and mTORC1 [11].

Box 2. Amino Acid Regulation of mTORC1 Signalling

While mTORC1activation by amino acids (AAs) does not directly involve TSC1/2 [88], it relies crucially upon mobilising
mTORC1 from the cytosol to the lysosomal membrane surface, where sensing of AA sufficiency is thought to occur. This
AA-induced translocation of mTORC1 involves members of the Rag family of small G-proteins that operate as functional
heterodimers (RagA or RagB with RagC or RagD) [89] and requires RagA/B to be GTP loaded and the RagC/D
component to be GDP loaded. In this configuration, Rags can interact with mTORC1 and tether to the Ragulator (Rag
regulator) complex [89], thereby placing mTOR in close proximity to its activator Rheb-GTP (Figure 2) [90].

While the Ragulator has guanine nucleotide exchange factor (GEF) activity towards RagA/B to facilitate GDP exchange
for GTP, hydrolysis of bound GTP is influenced by another protein complex, GATOR1, which has GAP activity towards
RagA/B [91]. GATOR1 is itself regulated by another protein complex, GATOR2, whose activity, in turn, is influenced by
association with a protein called Sestrin2. AA insufficiency promotes Sestrin2 association with GATOR2, which represses
its action toward GATOR1, allowing the latter to hydrolyse RagA/B-bound GTP and maintain mTORC1 in the cytosol. By
contrast, the Sestrin2 and GATOR2 association is reduced upon AA provision, which allows inhibition of GATOR1 and
permits Rag-dependent mTORC1 translocation to lysosomes. In addition to Sestrin2, recent work has also identified a
lysosomal membrane AA transporter, SLC38A9 (aka SNAT9), as a putative AA sensor whose occupancy by substrate
AAs may signal AA sufficiency to mTORC1 via its interaction with the Rag-Ragulator complex and the vacuolar
H+-ATPase [92,93].

However, while recruitment of the mTORC1 protein ensemble to lysosomes is important for AA-induced mTOR
activation, this process may be subject to additional AA sensing/regulatory inputs (Figure 2, main text). For example,
leucyl tRNA synthetase, MAP4K3 (a mitogen-activated protein kinase kinase), Vps34 (a class III phosphatylinositol 3-
kinase), inositol polyphosphate multikinase (IPMK), folliculin, and RalA have all been implicated in the nutrient-induced
activation of mTORC1 [94–98]. More recent work has indicated that glycogen synthase kinase-3 (GSK3)-mediated
phosphorylation of raptor may have a permissive role in AA-dependent mTORC1 signalling through stabilising the mTOR/
raptor interaction, thus supporting phosphorylation of raptor-bound mTOR substrates [99]. Whether these additional
inputs act in concert to orchestrate nutrient-dependent mTORC1 activation or whether their involvement is cell type and
context specific is currently unclear.
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independent groups have reported dysregulation of mTOR signalling, as evidenced by hyper-
active S6K1 phosphorylation within skeletal muscle of obese ob/ob and diet-induced mice
[15,21–24]. In agreement with these findings, Regazzati and coworkers further revealed the
ability of mTOR inhibition to enhance insulin-induced tyrosine phosphorylation of the insulin
receptor in REDD1-silenced 3T3-L1 adipocytes [17]. Furthermore, metformin, an insulin-sensi-
tising drug, has been reported to inhibit mTOR as well upregulate REDD1 expression in prostate
cancer cells [25]. However, whether this biguanide acts to improve insulin action through
elevating REDD1 expression and/or activity remains unknown.

Therefore, the prevailing paradigm would suggest that tissue expression of REDD1 would be
lower in the obese and/or diabetic state. However, several studies have reported elevated
REDD1 protein expression in skeletal muscle in various animal models of obesity and/or
diabetes, including obese ob/ob and high-fat diet (HFD)-fed mice, as well as streptozotocin-
induced diabetic mice [14,15,26–28]. Although it remains unclear whether elevated REDD1
expression contributes to repressed PKB/Akt-directed signalling in vivo, work by Dennis and
colleagues recently demonstrated that REDD1 acts to enhance PP2A-mediated dephosphory-
lation of PKB/Akt at Thr308 [11]. Moreover, REDD1 was also shown to co-immunoprecipitate
with PKB/Akt and the catalytic subunit of PP2A, suggesting that REDD1 acts to bridge the
interaction between PKB/Akt and the phosphatase under certain cellular conditions [11]. In line
with this, the authors of the same study demonstrated that REDD1 mediated the interaction of
PKB/Akt with PP2A in response to endoplasmic reticulum (ER) stress. Interestingly, REDD1 was
only found to enhance PP2A-mediated dephosphorylation of PKB/Akt at the Thr308 residue in
its catalytic domain, and not at the Ser 473 regulatory site in its hydrophobic motif [11]. This
suggests that REDD1 acts to modulate site-specific activity of PP2A, although how it does so
remains unclear. It is noteworthy that recent work by Moore and coworkers demonstrated the
ability of glucosamine to repress insulin-stimulated PKB/Akt Thr308 phosphorylation and
downstream mTORC1 signalling in retinal Müller cells by increasing ER stress and REDD1
protein expression [29]. However, the potential involvement of PP2A in mediating the insulin-
desensitising action of glucosamine was not determined in this study.

In agreement with these findings, insulin-induced phosphorylation of PKB/Akt Thr308 was
shown to be augmented in REDD1-deficient mouse embryonic fibroblasts (MEFs), concomitant
with enhanced insulin-stimulated phosphorylation of the two PKB/Akt substrates GSK3//b
(Ser21/9) and Foxo1/3a (Thr24/32) [11]. It is noteworthy that this contrasts with observations
made in REDD1-deficient mice and REDD1-silenced 3T3-L1 adipocytes, in which reduced
insulin sensitivity has been reported [16,17]. Therefore, this suggests that the modulatory effects
of REDD1 upon insulin action are cell type and context specific, particularly in response to the
genetic manipulation of REDD1 by gene silencing and/or its ectopic expression, and will require
further investigation. Indeed, based on the previously reported observation that active PP2A can
mediate palmitate-induced insulin resistance [30], it is plausible that the ability of the saturated
fatty acid (or lipid intermediates derived from it, such as ceramide) to inhibit PKB/Akt may be
mediated, at least in part, through promoting REDD1-dependent interactions between PP2A
and PKB/Akt. To this end, further work will be required to establish the relative contribution of
REDD1 in mediating the insulin-desensitising actions of saturated fatty acids, such as palmitate.
Moreover, the development of strategies aimed at reducing REDD1 expression and/or activity,
such as through increased physical exercise [31–33], may prove beneficial in counteracting the
deleterious metabolic effects associated with the obese and/or insulin-resistant state.

In addition, obesity is often associated with the state of hyperinsulinaemia [34,35]. Notably,
insulin itself has been shown to transiently induce REDD1 expression in human and murine
adipocytes through activation of the PI3K/mTOR pathway and hypoxia-inducible factor-1 (HIF1),
a transcriptional activator of the REDD1 gene [36]. Moreover, a recent study by Williamson and
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coworkers reported increased REDD1 protein expression in skeletal muscle of individuals with
T2DM following a hyperinsulinaemic-euglycaemic clamp [37]. Interestingly, however, no such
increase was observed in response to insulin in corresponding lean control counterparts.
Accordingly, insulin-stimulated mTOR activation, as determined by the difference between
basal and insulin-induced S6K1 phosphorylation, was found to be significantly higher in insu-
lin-treated lean individuals, whereas it remained unchanged in the T2DM group [37]. In accord
with these findings, prolonged insulin exposure has been shown to attenuate the insulin-
signalling capacity by promoting inhibitory serine phosphorylation of IRS-1 through activation
of serine/threonine kinases, such as JNK, IKK, S6K1, and mTOR [18,38,39]. Therefore, from a
physiological perspective, the ability of insulin to upregulate REDD1 expression in skeletal
muscle could be envisioned as a regulatory loop to restore basal signalling, and/or as a
contributing factor in the development of insulin resistance.

Together, these findings indicate that REDD1 may act to impair insulin action under conditions
where its expression and/or activity becomes either aberrantly elevated, for example in obesity
and/or diabetes, or when it is substantially suppressed (i.e., through genetic inhibition). This
suggests that tightly coordinated regulation of REDD1 expression and/or activity is crucial for
maintaining proper insulin action in peripheral tissues, such as skeletal muscle.

Potential Factors Implicated in the Modulation of REDD1 Expression
Emerging evidence suggests that tissue REDD1 protein expression becomes altered in
response to obesity [15], thereby implicating several obesity-related factors in its regulation.
For example, increased adiposity has been associated with ER stress in various peripheral
tissues, including adipose tissue and skeletal muscle [40]. Moreover, ER stress has been shown
to induce REDD1 gene expression through activation of its transcriptional regulator ATF4
[41,42]. However, whether ER stress promotes insulin resistance, either in vitro or in vivo,
through the induction of REDD1 remains unclear.

Alternatively, another obesity-related factor that may regulate REDD1 expression is the hypoxia-
regulated transcription factor HIF1/ [36], which has also been implicated in the development of
insulin resistance. Overexpression of HIF1/ in adipose tissue has been reported to induce
insulin resistance and glucose intolerance [43]. Conversely, adipocyte-specific disruption of
HIF1/ ameliorated HFD-induced insulin resistance in mice [44]. In obesity, adipose tissue
undergoes expansion in response to excess caloric intake, eventually becoming hypoxic
due to the inability of the vasculature to keep pace with tissue growth. Consequently, the
resulting hypoxic conditions act to upregulate HIF1/ levels in adipose tissue [45–47]. However,
it remains unclear whether REDD1 mediates the insulin-desensitising actions of HIF1/ in the
obese state. To address this, future work may, for example, involve exploring the metabolic
effects of targeted REDD1 silencing in adipose tissue of transgenic mice expressing HIF1/.

Obesity-induced alterations in lipid levels may also act to modulate REDD1 expression. Work by
Williamson and colleagues suggests that elevated circulating and/or tissue lipid levels increase
skeletal muscle REDD1 expression [15,48]. For example, mice fed a HFD exhibit elevated
REDD1 protein abundance in skeletal muscle [15,48,49]. Moreover, this diet-induced increase in
muscle REDD1 expression was shown to be attenuated following calorie restriction in mice [49].
Elevated levels of REDD1 protein have been reported in ceramide-treated C2C12 myotubes,
concomitant with reduced Akt phosphorylation [48]. Allied to these findings, recent work by Lee
and colleagues demonstrated that lipopolysaccharide (LPS), a proinflammatory lipid known to
act by targeting Toll-like receptors, such as TLR2 and TLR4, induces REDD1 expression in
macrophages via a CREB-dependent mechanism [50]. Saturated fatty acids, such as palmitate,
have also been reported to bind and activate TLR2 and TLR4 [51]; however, it remains to be
determined whether saturated (e.g., palmitate; C16:0) and/or unsaturated (e.g., oleate; C18:1)
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fatty acids directly regulate REDD1 expression. Further work will be required to establish the role
of REDD1 in mediating fatty acid-induced insulin resistance and metabolic dysfunction, for
example by utilising REDD1-deficient cells (i.e., myotubes, hepatocytes, and/or adipocytes).

REDD1 expression can also be altered in response to changes in nutritional status. For example,
food deprivation is known to induce an increase in circulating glucocorticoids, such as cortico-
sterone, which in turn acts to stimulate REDD1 expression through the glucocorticoid receptor
(GR) [14,52]. Given that glucocorticoids are able to induce insulin resistance, it is plausible that
their insulin-desensitising effects may be mediated, at least in part, through increased REDD1
[53]. In accord with this, circulating glucocorticoid (corticosterone) levels have been shown to be
elevated in type 2 (db/db mice) diabetic mice, concomitant with increased muscle REDD1
expression [26]. Moreover, co-treatment of db/db mice with a GR antagonist was found to
normalise REDD1 muscle expression without altering serum glucocorticoid concentrations [26].
However, the effects of the GR antagonist upon insulin sensitivity were not described in this
study. Further evidence supporting a role for REDD1 in mediating the biological actions of
glucocorticoids was revealed by work demonstrating protection against the atrophic effects of
topical glucocorticoid application in skin cells of REDD1-knockout mice [54], as well as the
prevention of dexamethasone-induced skeletal muscle atrophy in REDD1-null mice [55]. Alter-
natively, elevated REDD1 mRNA abundance in white adipose tissue, liver, and skeletal muscle of
fasted mice has been suggested to be induced by the activation of p53, as evidenced by the
ability of the p53 activator nutlin-3 to increase REDD1 mRNA abundance in C3H10T1/2
adipocytes [56]. Therefore, changes in the activity of distinct factors, such as glucocorticoid
levels and p53 activity, may underlie altered REDD1 expression in different nutritional states, with
further analysis required to establish how these may impact insulin action and other metabolic
parameters.

REDD1-Mediated Regulation of Mitochondrial Function
In accord with its reported participation in the modulation of insulin sensitivity, there is now
emerging evidence to suggest that REDD1 also regulates mitochondrial integrity and oxidative
capacity. A study by Horak and coworkers first demonstrated that a significant portion (>10%) of
REDD1 is localised to mitochondria in MEFs [57]. The authors of the same study also showed
that this localisation was required for REDD1 to suppress mitochondrial reactive oxygen species
(ROS) production. Specifically, mitochondrial preparations from REDD1-deficient MEFs exhib-
ited increased generation of multiple ROS species, including superoxide (.O2–) and peroxide
(H2O2), compared with corresponding controls [57]. Strikingly, retroviral reconstitution of REDD1
was found to normalise cellular ROS production in REDD1-deficient MEFs. By contrast,
expression of a mutant form of REDD1 with compromised mitochondrial localisation failed to
reduce cellular ROS levels in the same manner [57]. In agreement with these findings, the
antioxidant salidroside was reported to prevent hydrogen peroxide-induced apoptosis of human
umbilical vein endothelial cells (HUVECs) in a REDD1-dependent manner, which coincided with
the attenuation of excessive ROS generation, as well as the ability of the antioxidant to
upregulate REDD1 protein levels [58]. However, it should be stressed that REDD1 may also
act to positively modulate intracellular ROS production, as demonstrated by elevated ROS levels
in response to REDD1 ectopic expression in TP63-null fibroblasts, as well as reduced hydrogen
peroxide content in splenocytes of REDD1-deficient mice [59,60]. In the latter case, reduced
oxidative activity following a loss in REDD1 expression may be linked to mitochondrial dysfunc-
tion, as evidenced by a recent study reporting decreased basal oxygen consumption, oxidative
ATP generation, and maximal respiratory capacity in REDD1-deficient MEFs [60]. The same
study also reported that reduced autophagic flux induced by treadmill exercise in skeletal muscle
of REDD1-deficient mice coincided with the accumulation of defective mitochondria, leading to
impaired oxidative phosphorylation [60]. In mechanistic terms, REDD1 modulation of autophagy
has been suggested to involve its direct interaction with the pro-oxidant protein TXNIP, whereby
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genetic suppression of either REDD1 or TXNIP in MEFs has been shown to reduce cellular ROS
and increase the catalytic activity of the redox-sensitive ATG4B cysteine endopeptidase, leading
to increased LC3B delipidation and impaired autophagy [60]. Indeed, because mitochondrial
dysfunction has been linked with the development of insulin resistance [61–64], it is conceivable
that decreased mitochondrial oxidative capacity may, at least in part, contribute toward the
impaired insulin action observed in response to REDD1 deficiency. Consistent with this, REDD1-
deficient mice were shown to display a marked reduction in exercise capacity compared with
wild-type counterparts, concomitant with significantly reduced (�30%) ATP levels in skeletal
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muscle following a forced exercise regime [60]. Separate studies also revealed the ability of
resistance exercise to induce rapid but transient increases in REDD1 expression (mRNA and
protein) in gastrocnemius muscle of rats [65,66], as well as in the vastus lateralis muscle of older
male individuals [67]. However, the exact mechanisms underlying these exercise-induced
increases in REDD1 expression, and whether they are linked to improvements in mitochondrial
oxidative capacity and insulin sensitivity, as well as changes in redox homeostasis and auto-
phagic capacity, remain unknown.

In addition to the production of ROS, other mechanisms may also be involved in REDD1-
mediated regulation of mitochondrial function. For example, PKB/Akt can promote cell survival in
part by blocking apoptosis initiated in response to cytochrome c release from mitochondria
[68,69]. Moreover, reduced PKB/Akt activity in response to altered REDD1 expression may
contribute to impaired mitochondrial function by compromising the ability of PKB/Akt to
preserve mitochondrial function through targeting downstream effectors, such as Pim-1 and
the FOXO and Hexokinase isoforms, particularly in response to cellular stress [69–73].

Notably, mTORC1 has also been reported to positively regulate mitochondrial biogenesis and
oxidative capacity [74,75]. For example, active mTORC1 acts to stimulate mitochondrial
biogenesis and metabolism through transcriptional regulators, such as peroxisome prolifera-
tor-activated receptor gamma coactivator 1-alpha (PGC1/) and transcription factor yin-yang 1
(YY1) [76]. Therefore, increased REDD1 expression and/or activity may act to suppress
mTORC1 activity, which, in turn, would impact negatively on mitochondrial abundance, integrity,
and/or oxidative capacity. Consistent with this idea, a study by Lafarge and coworkers demon-
strated that the livers of mice deficient for the protease cathepsin S exhibited a lower rate of
hepatocellular respiration compared with control counterparts, concomitant with elevated
hepatic expression of REDD1 [77]. In addition, peritoneal sepsis has been reported to increase
REDD1 protein content in skeletal muscle of mice [78], as well as to promote derangements in
mitochondrial bioenergetics in this tissue [79]. Therefore, further work will be required to explore
the potential link between obesity and/or diabetes, REDD1, and mitochondrial function, for
example using relevant animal models of obesity and/or diabetes as well as REDD1 deficiency.
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REDD1 Modulation of Insulin Production and Secretion
Although little is known regarding the role of REDD1 in the regulation of pancreatic function, a
study by Williamson and coworkers revealed that circulating plasma insulin concentrations were
significantly lower in mice lacking REDD1 compared with wild-type counterparts, suggesting
that insulin secretion and/or production become impaired in response to REDD1 deficiency [15].
Consistent with this idea and the fact that REDD1 acts to negatively regulate mTORC1, b cell
failure has been shown to coincide with mTORC1 hyperactivation, an effect demonstrated in
mice harbouring a b cell-specific deletion of TSC2, a key negative upstream regulator of
mTORC1 [80]. Conversely, disruption of mTORC1 function by silencing the expression of
raptor, a key component of the mTORC1 complex, was shown to concur with increased
glucose-stimulated insulin secretion and intracellular insulin content in pancreatic INS-1 cells
[81]. Therefore, the anticipated hyperactivation of mTORC1 in response to a loss of REDD1 may
act to reduce insulin production and secretion, as well potentiate b cell failure, as observed in the
diabetic state. Further work will be required to characterise the role of REDD1 in the regulation of
insulin production and secretion, as well as b cell viability, particularly in the obese and diabetic
states. To this end, it is plausible that observed reductions in insulin action in mice lacking
REDD1 may, at least in part, be due to a state of insulin deficiency as well as insulin resistance
[16].

REDD1 Involvement in Lipid Metabolism
Although the involvement of REDD1 in the regulation of lipogenesis remains poorly understood,
work by Regazzetti and coworkers first demonstrated that silencing REDD1 in 3T3-L1 adipo-
cytes using siRNA resulted in the attenuation of insulin-induced lipogenesis, concomitant with
suppressed insulin action [17]. Accordingly, REDD1 may be implicated in the control of lipogenic
pathways through its ability to modulate insulin signalling and, in particular, the activity of
downstream PKB/Akt targets, such as the transcription factor sterol regulatory element binding
protein-1 (SREBP-1), which has a crucial role in lipid homeostasis by inducing the expression of
genes, such as those encoding acetyl-CoA carboxylase (ACC) and fatty acid synthase [82,83]. In
addition to REDD1-mediated effects on lipogenesis, a separate study by Schupp and coworkers
also revealed that forced expression of REDD1 was sufficient to induce lipolysis in cultured
C3H10T1/2 adipocytes, as evidenced by increased glycerol and free fatty acid release [56].
Interestingly, this REDD1-driven enhancement in lipolysis did not coincide with significant
alterations to lipolytic genes, such as those encoding adipose triglyceride lipase (ATGL) and
hormone sensitive lipase (HSL) [56]. Therefore, given the emerging evidence for REDD1 in the
modulation of lipid homeostasis, further work will be required to determine those factors that can
mediate the regulatory actions of REDD1 on lipolytic and lipogenic processes, particularly in vivo.

Concluding Remarks and Future Perspectives
To conclude, there is growing evidence supporting a role for REDD1 in modulating insulin
sensitivity and other processes that impact energy homeostasis. This may be through the ability
of REDD1 to alter the function of key insulin-signalling components, as well as modulating cellular
(mitochondrial) bioenergetics (Figures 3 and 4). Notably, we have highlighted various metabolic
responses associated with REDD1 induction (Figure 3) or inhibition (Figure 4) that reveal distinct
modes of action. However, several issues remain, including the involvement of REDD1 in
mediating obesity-induced insulin resistance and metabolic dysfunction in different peripheral
tissues (i.e., skeletal muscle, adipose tissue and liver) (see Outstanding Questions), as well as the
therapeutic impact of targeting REDD1 to counteract such metabolic perturbations. Moreover,
little is known regarding the role of REDD1 in modulating pancreatic islet function, and how the
function of this protein may influence other obesity-related pathologies, such as the develop-
ment of hepatic steatosis and/or cardiovascular disease. Given the diverse nature of potential
REDD1-interacting proteins and regulators (e.g., TXNIP, PP2A, HIF1/, p53, and 14-3-3
proteins) [11,12,36,56,60], it is possible that the involvement of REDD1 in regulating energy

Outstanding Questions
What role does REDD1 have in the
pathogenesis of obesity-induced insu-
lin resistance? Are the metabolic
effects of REDD1 induction and/or sup-
pression cell type or tissue specific?

What strategies (pharmacological,
genetic, or otherwise) can be imple-
mented to counteract obesity-related
changes in REDD1 expression and/or
signalling that impact negatively insulin
sensitivity and glucose homeostasis?

Does islet b cell failure in T2DM coin-
cide with altered REDD1 expression
and/or function in this tissue?

Can regulation of REDD1 expression
and/or function be used as a therapeu-
tic strategy to control ectopic fat accu-
mulation (steatosis) in the liver and
heart?
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homeostasis is multifaceted and, as outlined in this review, may impact numerous metabolic
pathways and processes. Therefore, future work investigating the functional role of REDD1 may
offer new insights into the pathogenesis of metabolic deficiencies associated with obesity and
diabetes, as well as providing novel strategies for their prevention. In addition, the reported
metabolic actions of REDD1 may also have wide-ranging implications regarding its involvement
in the pathogenesis of various other diseases, such as cancer and neurological disorders, where
dysregulation of cellular metabolism has a critical role in their development [12,84].
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