33 research outputs found

    Linking Unserved Energy to Weather Regimes

    Get PDF
    The integration of renewable energy sources into power systems is expected to increase significantly in the coming decades. This can result in critical situations related to the strong variability in space and time of weather patterns. During these critical situations the power system experiences a structural shortage of energy across multiple time steps and regions, leading to Energy Not Served (ENS) events. Our research explores the relationship between six weather regimes that describe the large scale atmospheric flow and ENS events in Europe by simulating future power systems. Our results indicate that most regions have a specific weather regime that leads to the highest number of ENS events. However, ENS events can still occur during any weather regime, but with a lower probability. In particular, our findings show that ENS events in western and central European countries often coincide with either the positive Scandinavian Blocking (SB+), characterised by cold air penetrating Europe under calm weather conditions from north-eastern regions, or North Atlantic Oscillation (NAO+) weather regime, characterised by westerly flow and cold air in the southern half of Europe. Additionally, we found that the relative impact of one of these regimes reaches a peak 10 days before ENS events in these countries. In Scandinavian and Baltic countries, on the other hand, our results indicate that the relative prevalence of the negative Atlantic Ridge (AR-) weather regime is higher during and leading up to the ENS event.Comment: Rogier H. Wuijts and Laurens P. Stoop contributed equally to this wor

    Super sites for advancing understanding of the oceanic and atmospheric boundary layers

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clayson, C. A., Centurioni, L., Cronin, M. F., Edson, J., Gille, S., Muller-Karger, F., Parfitt, R., Riihimaki, L. D., Smith, S. R., Swart, S., Vandemark, D., Boas, A. B. V., Zappa, C. J., & Zhang, D. Super sites for advancing understanding of the oceanic and atmospheric boundary layers. Marine Technology Society Journal, 55(3), (2021): 144–145, https://doi.org/10.4031/MTSJ.55.3.11.Air‐sea interactions are critical to large-scale weather and climate predictions because of the ocean's ability to absorb excess atmospheric heat and carbon and regulate exchanges of momentum, water vapor, and other greenhouse gases. These exchanges are controlled by molecular, turbulent, and wave-driven processes in the atmospheric and oceanic boundary layers. Improved understanding and representation of these processes in models are key for increasing Earth system prediction skill, particularly for subseasonal to decadal time scales. Our understanding and ability to model these processes within this coupled system is presently inadequate due in large part to a lack of data: contemporaneous long-term observations from the top of the marine atmospheric boundary layer (MABL) to the base of the oceanic mixing layer. We propose the concept of “Super Sites” to provide multi-year suites of measurements at specific locations to simultaneously characterize physical and biogeochemical processes within the coupled boundary layers at high spatial and temporal resolution. Measurements will be made from floating platforms, buoys, towers, and autonomous vehicles, utilizing both in-situ and remote sensors. The engineering challenges and level of coordination, integration, and interoperability required to develop these coupled ocean‐atmosphere Super Sites place them in an “Ocean Shot” class.NOAA CVP TPOS, Understanding Processes Controlling Near-Surface Salinity in the Tropical Ocean Using Multiscale Coupled Modeling and Analysis, NA18OAR4310402 to CAC and JE. NSF Award PLR-1425989 and OPP-1936222, Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) to SG. NOAA, BOEM, ONR, NSF, NOPP, NASA Applied Sciences Office, Biodiversity & Ecological Forecasting Program; National Science Foundation (Co-PI J. Pearlman); OceanObs Research Coordination Network (OCE-1728913) to FM-K. NASA, SWOT program, Award # 80NSSC20K1136 to ABVB. NSF, Investigating the Air-Sea Energy Exchange in the presence of Surface Gravity Waves by Measurements of Turbulence Dissipation, Production and Transport, OCE 17-56839; NSF, A Multi-Spectral Thermal Infrared Imaging System for Air-Sea Interaction Research, OCE 20-23678; NSF, Investigating the Relationship Between Ocean Surface Gravity–Capillary Waves, Surface-Layer Hydrodynamics, and Air–Sea Momentum Flux, OCE 20-49579 to CJZ. Partially funded by NOAA/Climate Program Office and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063 to DZ

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Rupert Čunko, udaraljke : diplomski ispit

    No full text
    Diplomski ispit Ruperta Čunka (udaraljke), studenta MA. Ispit je održan na MA u Koncertnoj dvorani "Blagoje Bersa" 29.6.2021. Gosti izvođači: Neven Resnik, Luka Mihajlović, Mario Čavlek; mentor: Igor Lešnik. Program: 1. Igor Lešnik: Olympian Drums, tapan; 2. Toshimitsu Tanaka: Two Movements for Marimba; 3. Yan Maresz: Etude d'Impacts- timpani; 4. Frank Zappa: Black Page- set bubnjeva

    Economic impact of mepolizumab in uncontrolled severe eosinophilic asthma, in real life

    Get PDF
    Background and aims: Severe asthma is burdened by frequent exacerbations and use of oral corticosteroids (OCS) which worsen patients' health and increase healthcare spending. Aim of this study was to assess the clinical and economic effect of adding mepolizumab (MEP) for the treatment of these patients. Methods: Patients >18 years old, referred to 8 asthma clinics, starting MEP between May 2017 and December 2018, were enrolled and followed-up for 12 months. Information in the 12 months before mepolizumab were collected retrospectively. The evaluation parameters included: OCS use, number of exacerbations/hospitalizations, concomitant therapies, comorbidity, and annual number of working days lost due to the disease. The primary objective was to compare the annual total cost per patient pre- and post-MEP. Secondary outcomes included rates of exacerbations and number of OCS-dependent patients. Results: 106 patients were enrolled in the study: 46 male, median age 58 years. Mean annual cost pre- and post-MEP (cost of biologic excluded) was €3996 and €1,527, respectively. Total savings due to MEP resulted in €2469 (95%CI 1945-2993), 62% due to exacerbations reduction and 33% due to productivity increase. Such savings could fund about 22% of the total cost of MEP for one year. The introduction of MEP induced a clinical benefit by reducing both OCS-dependent patients (OR = 0.12, 95%CI 0.06-0.23) and exacerbation rate (RR = 0.19, 95%CI 0.15-0.24). Conclusions: Patients with severe eosinophilic asthma experienced a clinical benefit in asthma control adding MEP to standard therapy. Biologic therapy can be, partially, funded by the savings produced by patients' improvement

    Auswirkungen der Klimaänderung auf Wasserressourcen und Gewässer

    No full text
    Im Rahmen des Projekts «Klimaänderung und Hydrologie in der Schweiz» (CCHydro) des Bundesamts für Umwelt (BAFU) wurden die Auswirkungen des Klimawandels auf den Wasserhaushalt der Schweiz bis zum Jahr 2100 untersucht. Das Wasserdargebot wird sich bis dann nur wenig ändern. Als Folge des Anstiegs der Schneefallgrenze parallel zur Zunahme der Lufttemperatur werden die in den Alpen gespeicherten Schnee- und Eismassen jedoch stark vermindert. Zusammen mit einer saisonalen Umverteilung des Niederschlags (trockener im Sommer, feuchter im Winter) wird dies eine jahreszeitliche Umverteilung der Abflüsse hervorrufen. Hochwasser- und insbesondere Niedrigwasserereignisse werden wahrscheinlich vermehrt auftreten – vor allem in sensitiven Regionen wie dem Mittelland, dem Wallis oder dem Tessin
    corecore