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Abstract

The integration of renewable energy sources into power systems is expected to increase
significantly in the coming decades. This can result in critical situations related to the
strong variability in space and time of weather patterns. During these critical situations
the power system experiences a structural shortage of energy across multiple time steps
and regions, leading to Energy Not Served (ENS) events.

Our research explores the relationship between six weather regimes that describe
the large scale atmospheric flow and ENS events in Europe by simulating future power
systems. Our results indicate that most regions have a specific weather regime that leads
to the highest number of ENS events. However, ENS events can still occur during any
weather regime, but with a lower probability.

In particular, our findings show that ENS events in western and central European
countries often coincide with either the positive Scandinavian Blocking (SB+), charac-
terised by cold air penetrating Europe under calm weather conditions from north-eastern
regions, or North Atlantic Oscillation (NAO+) weather regime, characterised by west-
erly flow and cold air in the southern half of Europe. Additionally, we found that the
relative impact of one of these regimes reaches a peak 10 days before ENS events in these
countries. In Scandinavian and Baltic countries, on the other hand, our results indicate
that the relative prevalence of the negative Atlantic Ridge (AR-) weather regime is higher
during and leading up to the ENS event.

Plain Language Summary

With the energy transition, energy system evolve and renewable energy technolo-
gies such and solar PV and wind turbines become more common. This increases the re-
lation between weather, climate and the energy systems.

To assess the reliability of a possible evolution of an energy system, we can look
at possible structural shortage of energy supply due to either the weather or the system
design. For this purpose, an Energy System Model can be developed in which the prop-
erties of a specific energy system design are accounted for. Such Energy System Mod-
els provide insight into a possible operation of the energy system and thereby insight into
its reliability.

In our research we found that for Europe possible structural shortage due to the
weather occurs in the winter. In the winter the complex state of the weather can be sim-
plified into six states. We found that most regions have a specific state in which there
is an increased risk of possible structural shortage. This riskiest state for central Europe
is associated with colder temperatures and calm weather. The riskiest state for north-
ern Europe is associated with sunny, but cold weather in north-eastern Europe.

1 Introduction

In 2022, anthropogenic greenhouse gas emissions are estimated to already have caused
approximately 1.0°C of warming to the average global surface temperature compared to
pre-industrial levels (1850-1900) (IPCC, 2021). To avoid the worst consequences of cli-
mate change, the world strives to rapidly reduce its greenhouse gas emissions (UNFCCC,

2015; EC, 2019). In order to reduce COs emissions in the power system, supply needs

to shift to renewable energy sources (RES) complemented by low carbon generators (International

Energy Agency, 2022). In the future a large part of RES are variable such as solar pho-

tovoltaic (PV), onshore and offshore wind, and run-of-river hydro power. The relative

share of RES in the global production of electricity is increasing, 10.5% of the total gen-

eration of electricity in 2021 came from solar and wind compared to less than 1% in 2012 (BloombergNEF,
2022). Moreover, more than 80% of the newly installed capacity in power systems around



the world in 2021 came from RES (IRENA, 2022). However, the energy production of
these sources is uncertain and variable. To mitigate this variability a power system must
have sufficient storage, demand side response, low/non carbon emitting supply, and trans-
mission capacity to spread the uneven power generation over time and space.

A critical situation in a power system may not always manifest as a high residual
load at a single time step and place (van der Wiel et al., 2019a; van der Wiel et al., 2019B;
Craig et al., 2022), but can also manifest as a structural shortage of energy over mul-
tiple time steps and across multiple regions (Stoop et al., 2021). When these critical sit-
uations occur the power system cannot supply every demand, resulting in Energy Not
Served (ENS).

ENS is an important reliability indicator for power systems. ENS is the part of de-
mand which is not supplied in a given region over a given time period due to insufficient
supply or demand-side resources, implying the Transmission System Operator (TSO) would
need to curtail demand involuntary to maintain stable system operation. The expected
Energy Not Served (EENS) is one of two key reliability indicators which must be cal-
culated in the European Union as part of the European Resource Adequacy Assessment
(ERAA) (ENTSO-E, 2021). The other key reliability indicator is loss of load expecta-
tion (LOLE), i.e., the average number of hours ENS that is expected to occur per year
based on simulations. However, in power system models, LOLE can take on arbitrary
values making it a less robust indicator than EENS (R. H. Wuijts et al., 2022).

Weather regimes are classifications of the European winter time period meteoro-
logical variability ! at the synoptic scale? into quasi-stationary, persistent and recurrent
large-scale atmospheric circulation patterns. As the weather in the winter period in Eu-
rope is more persistent, weather regimes are often defined for the extended winter (Michelangeli
et al., 1995; Neal et al., 2016; S. K. Falkena et al., 2020), although other year-round def-
initions exist (Grams et al., 2017). The circulation pattern over Europe, and thus a spe-
cific weather regime, influences the renewable generation and the energy demand in Eu-
rope. Therefore, it may be more difficult to supply all energy demand in certain weather
regimes than others, potentially leading to ENS (van der Wiel et al., 2019B; H. C. Bloom-
field et al., 2019; Otero et al., 2022; Tedesco et al., 2022).

In this article, we aim to investigate the relationship between ENS and weather regimes

in Europe. Specifically, we want to determine which weather regimes lead to the high-

est levels of ENS in European countries. By identifying these critical weather regimes,

we can better understand the factors that contribute to ENS and find directions to make

the future European power system more resilient. We explore this relationship by sim-
ulating the scenarios of a future European power system created by ENTSO-E, incor-
porating 28 historical weather years in total. For these simulated years we calculate when
and how much ENS occurs for each time step and region and if this ENS concurrently
occurs with specific weather regimes.

1 Meteorological or climate variability describes variations and changes in the mean state and other
aspects of climate. Climate variability occurs due to natural and sometimes periodic changes in the circu-
lation of the air and ocean, volcanic eruptions, and other factors. This variability ranges over all spatial
and temporal scales, from localised thunderstorms, to larger-scale storms or droughts, and from day-to-

day to multi-year, multi-decade and even multi-century time scales.
2 In meteorology, the synoptic or large scale is used to indicate weather systems ranging in size from

several hundred to several thousand kilometres. This corresponds to a horizontal scale typical of mid-

latitude high pressure systems, extra-tropical cyclones and storms.



2 Methods & Modelling

In this section, we provide an overview of our methods. We first describe the base-
line capacity scenarios we used to model the future European power system. Next, we
explain how we constructed our power system model and how we calculated weather-
dependent variables, such as wind and solar generation and hydro inflow, for multiple
weather years. In the following section we outline the weather regime classification we
employed and finally we explain how we generated weather-dependent demand.

2.1 Energy System Scenarios

As basis of our power system model, we used the future European power system
scenarios from the 2020 Ten Year Network Development Plan (TYNDP2020) created by
the European Network of Transmission System Operators for Electricity (ENTSO-E) and
Gas (ENTSO-G) (ENTSO-E & ENTSO-G, 2020b). These scenarios provide insights into
the possible energy system of the future and the effects of changes in supply and demand
in the energy system.

For our study we used the three scenarios of the TYNDP2020 study as a starting
point, namely the three different pathways of National Trends (NT), Global Ambition
(GA) and Distributed Energy (DE) for the target year 2040. Table 1 gives an overview
of the total generation capacity per technology for each scenario. Each scenario consists
of 55 ‘nodes’ corresponding roughly to the current bidding zones in Europe. Each bid-
ding zone usually covers an entire country except for Norway, Denmark, Sweden, and
Italy as these are divided into multiple zones. In Appendix C an overview of the bid-
ding zones, their region code, and the corresponding countries is provided. Appendix D
presents an overview of the installed capacities for some bidding zones of the DE sce-
nario as this is mainly used in this analysis.

Table 1: Total capacity (GW) in Europe for different generation technologies for the
different TYNDP Scenarios in 2040.
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The TYNDP scenarios are comprehensive datasets that provide a detailed break-
down of the assumed generator capacities of different technologies in the different bid-
ding zones. The datasets include generators of various fuel types and ages, which can
impact their efficiency. However, technological details such as average unit size and ramp-
ing limits have been added from other sources (Poncelet et al., 2020; ETRI, 2014), as
these were not included in the TYNDP datasets. The transmission capacity between re-
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Figure 1: As a percentage of total capacity in the region, the total thermal dispatch ca-
pacity (red), the additional transmission capacity (purple), and storage capacity (blue)
are shown for a subset of bidding zones with high residual load. In addition, the maxi-
mum residual load (green box) over 28 weather years for the scenario Distributed Energy
2040 is shown. See Appendix C for the explanation of the codes.

gions is given by net transfer capacity (NTC) values, which are constant throughout the

year but differ per scenario. All the capacity and grid data used and information about
their origin is included in an online dataset?.

The maximum residual load is defined as the remaining demand when renewable
energy generation (i.e. from solar, wind and run-of-river hydro) is fully utilised to meet
the demand. We found that for some bidding zones and scenarios, the maximum resid-
ual load exceeds the total thermal, transmission and storage capacity for that zone (Fig-
ure 1). However, most bidding zones in these scenarios are adequate by design (ENTSO-

E & ENTSO-G, 2020b). In addition, we do not utilise the demand side response options
that were defined to negate this.

To identify critical situations in which not all demand can be met by generation,
we made the TYNDP scenarios more challenging by either increasing the demand (i.e.

an increase in electrification) or decreasing the generation (i.e. a decrease in carbon-emitting

generators). We define 12 scenarios: four alternatives of each of the 3 TYNDP scenar-
ios: (i) unchanged, (ii) +10% demand, (iii) +20% demand and (iv) -20% generation ca-
pacity. For the latter, we only decrease the capacity of highly emitting generators that
use as fuel either hard coal, lignite, or oil.

3 The capacity data and its source can be found here https://github.com/rogierhans/
TYNDP2040ScenarioData.



2.2 Power System Model

We used the unit commitment and economic dispatch problem (UCED) to simu-
late the hourly operation of the power system in Europe. The UCED is a mathemati-
cal optimisation model that finds the most cost-effective schedule for operating gener-
ators, ensuring that all demand is met at every time step and in every region. This method
was chosen for its ability to simulate hourly market operations with high technical de-
tail, which is commonly used in the power industry (Welsch et al., 2014; Abujarad et al.,
2017).

The UCED may incorporate many types of technical constraints, of which some
can be omitted depending on the purpose of the study (R. Wuijts et al., 2023). We there-
fore can use a simplified model which includes fewer constraints regarding the flexibil-
ity of thermal power plants. Moreover, we explicitly minimise the ENS in the power sys-
tem and not the total system cost, which implicitly minimises the same amount of ENS.
The complete model specification, our simplifications and the validation of the assump-
tions underlying these simplifications can be found in Appendix E and Appendix F re-
spectively.

We simulate the hourly operation of the power system for a total of 28 weather years
(1982-2010) in yearly segments from the 15¢ January to the 315¢ of December, i.e. 8760
hours in one model run. We set the storage levels at the start of the simulation at half
capacity and enforce that the capacity is also at half capacity at the end of the year. This
ensures that within a simulated year any storage discharged, e.g. hydro reservoirs are
compensated by pumping or hydro inflow during that year.

2.3 Modelling weather dependent variables

The TYNDP scenarios contain, among others, technologies that depend on the weather,
see Table 1. When the influence of the weather on an energy system is investigated, it
is vital that the potential generation of these technologies is modelled accurately (Craig
et al., 2022). As the spatial distribution of measurements is sparse, climate model data
is utilised. As the data for the different technologies was collected from various sources,
care was taken to make sure that the underlying climate model is consistent across them.

For all weather dependent variables, data derived from the ERAS reanalysis dataset
is used (Hersbach et al., 2018). Wind and solar energy generation was determined with
the conversion models as described in Section 2.3.1 for the period 1950-2022. The hy-
drological data provided through by the E-Hype project, as described in Section 2.3.2,
was only available from 1980-2010. The energy demand dataset, as described in Section
2.5, was only available from 1982-2016. The analysis is, therefore, limited to the period
1982-2010, as this is the period with maximum overlap.

2.3.1 FEnergy conversion models for Wind and solar

To determine the electricity generation time series of RES per bidding zone, two
things need to be determined. First, the potential generation profile per unit of installed
capacity for solar photovoltaic and wind turbine technology must be determined for each
climate model grid cell. Second, the potential generation of each technology must be mul-
tiplied by the distribution of installed capacity in each grid cell and summed up over all
grid cells within a bidding zone.

Conversion models can be employed to calculate the potential generation of wind
and solar energy. In previous work within the ACDC-ESM project (Stoop et al., 2021),
a number of conversion models were analysed and compared together with the TSO stake-
holder, TenneT TSO B.V., to determine which were representative yet computationally
simple. For solar photovoltaic electricity generation we follow these recommendations



and use the relatively simplified method as described by Jerez et al. (2015). For com-
prehensiveness, Appendix G provides the exact description of the method used. More
elaborate methods, like the one presented by Saint-Drenan et al. (2018), were not used,
as these require additional information on panel tilt angle and solar radiation compo-
nents that are not available within the TYNDP2020 scenario building guidelines.

For wind turbine electricity generation, we follow the recommendation laid out by
Stoop et al. (2021) and use the method as described from Jerez et al. (2015). However,
we made four adjustments to this model to align it with the TYNDP2020 study. First,
we reduced the effective maximum capacity factor (CFy) by 5% to 95% to represent the
wake and array losses in large scale wind-farms (Lundquist et al., 2018; Bleeg et al., 2018;
Fischereit et al., 2021; Saint-Drenan & et al., 2020). Secondly, we let the capacity fac-
tor linearly decrease at high wind speeds to more accurately represent high windspeed
operational conditions. The third change was that we tuned the power curve regimes based
on stakeholder input. Finally, the wind speed provided by ERAS5 (at 100 meter) does not
match the hub heights of turbines within the TYNDP scenarios used, therefore it is scaled
using the wind profile power law to 150 meters for offshore turbines and 120 meters for
onshore turbines. See Appendix H for the formal definitions and more detailed discus-
sion of the methods used.

For both technologies the total energy generation per bidding zone per hour was
obtained by multiplying the weighted mean generation profile per bidding zone with the
installed capacity as provided by the ENTSO-E and ENTSO-G (2020b) for the scenario
used. The weights in the averaging procedure for each bidding zone were determined by
the mean capacity factor of each grid cell within that zone. Grid cells that were partially
within a bidding zone got an additional weighting based on the percentage of the area
within a zone.

2.3.2 Hydro inflow data

The hydro inflow data is based on historical river runoff reanalysis data simulated
by the E-HYPE model (Donnelly et al., 2016). E-HYPE is a pan-European model de-
veloped by The Swedish Meteorological and Hydrological Institute (SMHI), which de-
scribes hydrological processes including flow paths at the subbasin level. E-hype only
provides the time series of daily river runoff entering the inlet of each European subbasin
over 1980-2010. To match the operational resolution of the dispatch model, we linearly
downscale these time series to hourly. By summing up runoff associated with the inlet
subbasins of each country, we also obtain the country-level river runoff.

The hydro inflow time series per country as inputs of the UCED model is defined
as the normalized energy inflows (per unit installed capacity of hydropower) embodied
in the country-level river runoff. The dispatch model decides whether the energy inflows
are actually used for electricity generation, stored, or spilled (in case the storage reser-
voir is already full). Specific details on the modelling method can be found in Appendix
L.

We explicitly consider three types of hydropower plants, namely storage hydropower
plant (STO), run-of-river hydropower plant (ROR) and pumped storage hydropower plant
(PHS). For modelling purposes, we need to estimate the specific maximum energy stor-
age content, for each type of hydropower. We obtain this by using an in-house database,
containing the information of 207 hydropower plants, and calibrating this with present
level of total storage size (220 TWh) in Europe given by Mennel et al. (2015).

2.4 Weather Regimes

In this study we use the classification of the atmospheric state from S. K. Falkena
et al. (2020). They revisited the identification of European weather regimes and showed



Table 2: Prevalence of the daily defined European weather regimes (WR) in the winter
months (December, January, February, March) from 1982 to 2010: the number of days
the WR occurs, number of periods (consecutive days with the same WR), the average and
maximum length of these periods.

WR ‘ number of days number of periods avg length period max length period

AR- 550 (15.6%) 114 4.8 days 23 days
AR+ 562 (16.0%) 151 3.7 days 16 days
NAO- 611 (17.4%) 145 4.2 days 20 days
NAO+ 697 (19.8%) 167 4.2 days 16 days
SB- | 568 (16.2%) 157 3.6 days 92 days
SB+ 528 (15.0%) 89 5.9 days 32 days

that six clusters should be used in the classification, see Appendix J. The six weather
regimes used are defined for the whole of Europe at a daily interval for the period December-
March from 1979-2018, but we only used the period 1982-2010 due to the availability of
other datasets. The six regimes used have been labelled to indicate atmospheric state.

Due to their symmetry, a name (Atlantic Ridge (AR), North Atlantic Oscillation (NAO)

and Scandinavian Blocking (SB)) and state (+ and —) are used to label each of the six
weather regimes. It should be noted that the naming convention used, does not imply

that the weather associated with these six weather regimes is similar to a definition that
uses four or two clusters to classify the weather.

While the specific weather can vary within a weather regime, the general flow of
air is consistent within a weather regime, see also Appendix L. The AR+ regime is as-
sociated with north-to-south air flow, sunny weather in north-eastern Europe and with
calm weather in the Atlantic. The AR- regime is associated with sunny, but cold weather
in north-eastern Europe, with a gradient to slightly warmer weather in the south-west.
Under both AR regimes south-west Europe is characterised by decreased wind speeds
and increased solar irradiance. The NAO+ regime is associated with a westerly flow, bring-
ing warm temperatures and higher wind speeds to Scandinavia, while in the south colder
temperatures and less sunlight is seen. Warmer and sunnier weather is observed in most
of Europe during the NAO- state, due to south-)easterly flow. On the other hand, the
blocking pattern of the SB+ regime, due to a stationary large high pressure system in
Scandinavia, generally brings cold and calm weather to central and northern Europe. While
the SB- regime shows an increased wind speed in central Europe and the Atlantic. Both
SB regimes show strongly reduced solar irradiance.

The persistence and occurrence of a specific weather regime is subject to decadal
variability (Dorrington et al., 2022), and thus depend on the analysed period. Therefore,
we show in Table 2 the occurrence (the presence of weather regimes in the total num-
ber of days), how many times a persistent period of that weather regime occurs, the per-
sistence (the average length) and maximum length for the six weather regime used.

2.5 Weather dependent demand

Weather not only influences the generation of electricity, but also the demand for
electricity, primarily for heating, cooling and lighting. The effect of temperature based
metrics like Heating Degree days on demand are known (Quayle & Diaz, 1980) and well
established metrics in impact assessments (van der Wiel et al., 2019a; H. Bloomfield et
al., 2021). Scenarios for the future like the TYNDP2020, take into account system wide
changes to an energy system. Not only the influence of temperature on the need for space
heating and cooling related demand is taken into account, but also the transition to heat



pumps and the additional demand from transport electrification (private cars, busses,
passenger trains and heavy goods) (ENTSO-E & ENTSO-G, 2020a).

In this study we use the hourly weather dependent demand time series for each bid-
ding zone and scenario that were generated for the TYNDP2020. As the weather model
that was used to obtain the Pan-European Climate Database version 3.1 (PECDv3.1)
dataset is ERADB, the driving weather is consistent with the other data sources used. Be-
cause, the PECDv3.1 dataset initially published by ENTSO-E contained a few errors (coun-
tries missing data under specific scenarios), the specific updated and complete datafiles
used were provided by ENTSO-E through the ACDC-ESM project.

3 Results

In this section, we present our results in three stages. We first show the link be-
tween energy not served (ENS) and weather regimes for the 12 adjusted TYNDP sce-
narios. Then we discuss to what degree the sequence of weather regimes increases or re-
duces the risk for the energy system. And finally, we look deeper into what the mete-
orological link is between the weather regimes and ENS.

In the analysis we focus on two typical regions based on subsets of bidding zones.
The first regions consist of Germany (DE00), France (FR00) and the Netherlands (NL0O)
and represents central Europe. The second regions consist of Lithuania (LT00), Latvia
(LV00), the southern region of Norway (NOM1) and the northern region of Sweden (SE01)
and represents the Scandinavian and Baltic region.

3.1 Scenario dependency

In Figure 2 the ENS as a percentage of the total demand is shown for all twelve
scenarios. We can see that for the base scenarios of the TYNDP, Finland (FI00) and Nor-
way (NON1, NOSO, NOM1) have some ENS (approximately 0.6% of the total demand),
but for most countries the ENS is close to zero. When the base scenario is stretched, ei-
ther by increasing the demand or decreasing the generation capacity of dispatchable gen-
erators, then we indeed see more ENS. Especially the Scandinavian and Baltic countries
have ENS in the altered scenarios. From the three scenarios provided by the TYNDP,
National Trends has the least ENS while Distributed Energy has the most.

The distribution of ENS events throughout the year is given in Figure 3 for all twelve
scenarios, showing that most ENS occurs in the winter months. As the ENS between bid-
ding zones can differ in orders of magnitude, the total hours of loss of load expected (LOLH)
is shown instead. When the demand increases, inevitably there would be some ENS in
the non-winter months as can be seen in the third row. However, most LOLH and ENS
occur in the winter time period, from December to March. As the meteorological vari-
ability in this winter period can be identified by using the definition of the weather regimes,
a classification of the atmospheric state, we can analyse the relation between these regimes
and the ENS events.

To investigate whether ENS events are not only caused by a single atmospheric state,
but also by a specific sequence of atmospheric states, the weather regime occurrence pre-
ceding an ENS event is shown in Figure 4. We go back as far as 30 days before the ENS
event to capture the impact of longer persisting weather regimes (see also Table 2). We
observe that three weather regimes are most prevalent in this 30 day period: the pos-
itive state of Scandinavian Blocking (SB+) and the North Atlantic Oscillation (NAO+)
weather regimes for the typical central European regions (Figure 4a), and the negative
state of the Atlantic Ridge (AR-) regime for the Scandinavian and to a lesser degree at
the Baltic zones (Figure 4b). In the northern European zones this behaviour is already
detected in the original scenarios. However, for central European zones this behaviour
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is only detected during more challenging scenarios since those regions have almost no
ENS in less demanding scenarios.
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Figure 4: The distribution of daily weather regimes (WR) occurrence in the 30 days be-
fore an ENS event for a subset of scenarios and bidding zones based on the weather years
1982 to 2010.

For the Netherlands in the scenarios DE+10%, GA+20% and NT+10%, presented
in Figure 4a, the SB+ regime is present during 21.0%, 24.9% and 20.1% of the ENS events,
respectively. While its average occurrence is 15.0% during the full period analysed (1982-
2010). In the 30 days prior to an ENS event the prevalence of SB+ is even stronger for
the Netherlands with 28.7%, 47.0% and 40.6% of the time, respectively.

Similar behaviour is seen in most central European bidding zones, and while its ab-
solute statistics differ between scenarios, it does not seem to depend on a specific sce-
nario. Giving the fact that SB+ is the least frequent weather regime in our data set (Ta-
ble 2), it is a clear signal that the SB+ weather regime is more likely to result in crit-
ical situations for central Europe.

3.2 Sequence of Weather Regimes

The central European regions mostly have a NAO+ or SB+ weather regime on the
day of the ENS event (Figure 4a). In addition, even without the SB+ weather regime
during the ENS event, this weather regime is prevalent 10 days before the ENS event.
This suggests that a specific sequence or precedence of a weather regime could cause ENS.

To identify whether specific weather regimes are more prevalent in the period be-
fore ENS events, we assessed their occurrence during an ENS event, and 10 and 20 days
before (see Appendix K). We observe that ENS take place most of the time during the
SB+ or NAO+ weather regimes across all scenarios (see Figure 5), and 10 or 30 days
before the ENS events the weather is mostly in a SB+ regime. However, for the bidding
zones in Norway and Sweden the AR- weather regime occurs slightly more in the 10 and
30 days before an ENS event. During or 10 days before an ENS event, no weather regime
is clearly occurring the least. However, 30 days before an ENS event, NAO- is the least
present.
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Figure 5: The occurrence of the two weather regimes that are present the most and the
least during the day of the ENS event, and in the 10 and 30 days preceding it. Only the
bidding zones with at least 50 ENS events across all scenarios and weather years based on
1982 to 2010 are presented. Naming convention are provided in Appendix B.
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The occurrence of a possible specific sequence of weather regimes leading to ENS
is shown in Figure 6. For central European bidding zones, represented by Germany, there
is a significant occurrence of SB+ in the period leading to an ENS event that happens
during the weather regimes AR-, NAO+ or SB+. We observe a peak in the presence of
SB+ at 10+ days prior to the ENS event. This is not something that is already present
in the normal precedence of these weather regimes.

For Scandinavian bidding zones, represented by Sweden in Figure 6, there is a sig-
nificant occurrence of SB+ in the period leading to an ENS event that coincides with
a NAO+ or SB+ weather regime. However, unlike the central European region this is
not observed for ENS events during the AR- weather regime, which is most prominently
associated with ENS events in northern Europe. In addition, we can see that the AR-
regime is strongly present 20+ days prior to ENS events during SB- weather regime.
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Figure 6: The daily relative occurrence of weather regimes (WR) before an ENS event
grouped by the weather regime on the day of the ENS event in the analysed period (1982-
2010). Base shows the normal precedence of weather regimes prior to a specific weather
regime at day 0. For clarity, only Germany (DE00) and Sweden (SE01) are shown for the
Distributed Energy +20% demand scenario.

3.3 Driving factors for Unserved Energy during Weather Regimes

That some weather regimes have a stronger link with ENS events can be expected
as they are a way to analyse the meteorological variability at a synoptic scale, which in-
fluences the renewable electricity generation, hydro inflow and temperature, which in turn
influences electricity demand. However, these weather regimes are defined over the whole
of Europe, while their impact depends on the region considered.

Based on the spatial changes of meteorological circumstances during a specific weather
regime, we can assess its potential impact on the energy system. For instance, on aver-
age during the SB+ weather regime a decrease in wind power potential is observed in
parts of central Europe with respect to the December to March mean (Figure 7). This
would likely impact the electricity system during this weather regime. Similarly, the NAO-
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Figure 7: The average wind power generation anomaly from December to March (DJFM)
in Europe for each weather regime with respect to the DJFM mean in the period 1982-
2010.

weather regime is associated with small change in wind power potential over Europe. Ad-
ditional Figures describing the anomaly over Europe in solar power potential and the
meteorological drivers can be found in Appendix L.

Compared to the average anomaly in renewable energy generation potential, de-
mand, and residual load in the winter period (see Figure 8), the SB+ weather regime
is on average associated with higher demand and lower generation from solar photovoltaic
systems, onshore and offshore wind. This behaviour is observed in both representative
regions. Consequently, the residual load during a SB+ regime in these zones is much higher
on average compared to other weather regimes, for the Latvian region (LTO00) it is even
50.8% higher.

For some bidding zones another weather regime is associated with increased resid-
ual load. For instance, in the Netherlands (NL0O0), the NAO+ weather regime is asso-
ciated with an even higher residual load on average (25.9%) then under SB+ (18.2%),
while most ENS events are found during the SB+ weather regime. In addition, while the
AR- regime shows a strong relation with ENS for the Scandinavian and to a lesser de-
gree at the Baltic zones, the driving factors cannot be deduced based on the finding in
Figure 8.

Apparently, the weather regime is not the only driving factor for ENS events and
part of it is associated with (the assumptions of) the specific technologies used or the
energy system scenarios. In addition, although the European electricity grid is well in-
terconnected between bidding zones, the relation between an ENS event and a specific
weather regime can change from bidding zone to bidding zone. However, in general the
SB+ and NAO+ weather regimes are associated with more ENS events compared to other
weather regimes.

3.4 Role of storage

As we have shown in Section 3.1-3.3, the SB+ weather regime is prevalent in many
bidding zones during ENS events. This weather regime can persist for a prolonged pe-
riod (Table 2), and has a peak in relative occurrence in the 104 days prior to an ENS
event. The strong presence of the SB+ weather regime in the period prior to an ENS
event could indicate that a build up or a specific sequence of weather regimes is needed
for ENS to occur. This could indicate that storage plays a role, as it may be depleted
during these weather regimes.
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Figure 8: The average percentage anomaly, with respect to the December-March mean
based on the weather years 1982-2010, in demand, solar photovoltaic (PV), residual load,
onshore and offshore wind. The zones in the two typical regions for central Europe and
northern Europe are shown. Note that residual load can be negative and the mean can be
close to zero resulting in relative high changes.
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Figure 9: The average percentile anomaly per weather regimes in charge, discharge and
storage level, compared to the December to March mean during the 1982-2010, for the
total storage from batteries and (pumped) storage hydropower plant. The zones in the
two typical regions for central Europe and northern Europe are shown.

The evaluation of the average anomaly in storage level, the amount of charging and
discharging during a specific weather regime (see Figure 9) shows that the average stor-
age levels is higher during the SB+ weather regime in all bidding zones except for the
Netherlands (NLO0O). In addition, we observe an increase in the discharge (all regions)
and in the charging (central Europe) during these events. Similar behaviour is observed
for the SB- weather regime and during the NAO+ regime for the Netherlands (NLO0O).

The earlier observation that SB+ is more challenging may be aligned with the ob-
servation in Figure 9 that storage is utilised more frequently during the SB+ weather
regime to overcome these challenges. It should be noted that some regions, like Germany
(DE00), France (FR00), Sweden (SE01) and Norway (NOM1), also show this behaviour
to a lesser extend during the SB- and NAO+ weather regime.
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In addition, while the AR~ regime shows a strong relation with ENS for the Scan-
dinavian and to a lesser degree at the Baltic zones, the driving factors cannot be deduced
based on the finding in Figure 8.

In addition, we observe that the both states of the AR and the NAO- weather regime
are associated with low storage levels in the Scandinavian and some central European
regions. Especially the AR~ weather regime can be linked to depleting storage for Swe-
den (SEO01), Norway (NOM1), and France (FR00), with storage levels at -39.2%, -35.9%,
and -46.0% respectively. As the AR- regime shows a strong relation with ENS for the
Scandinavian and Baltic zones, storage is likely the driving factor in these zones.

3.5 Validation of power system model formulation

Model characteristics often included in the UCED problem such as ramping lim-
its, minimum uptime, and binary commitment variables, are unnecessary when you are
only interested in energy not served (R. Wuijts et al., 2023). This was validated by run-
ning multiple months with 4 different models of varying degree in detail and similar val-
ues of ENS where found (see Appendix E).

However, similar values of ENS do not imply that they occur at the same bidding
zone or time (R. H. Wuijts et al., 2022). Therefore, to make sure our results are robust
under different model decisions, a more detailed model that includes generation cost (the
Cost Model in Appendix E) was simulated for analysed period of 1982-2010 for the Dis-
tributed Energy +10% demand scenario. The Cost Model is optimised by the interior-
point barrier method while the ENS Model is optimised by the dual simplex method.
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Figure 10: The distribution of daily weather regimes (WR) occurrence in the 30 days
before an ENS event for the Cost and ENS Model formulations. Only the DE with 10%
extra demand scenario DE0O, FR0O0O and NLOO bidding zones are shown based on the
weather years 1982 to 2010.

In line with the results shown in Figure 4 for the ENS Model, we observe that three
weather regimes are most pronounced in the Cost Model (see Figure 10). While the ex-
act timing might be shifted slightly within a day, we observe extremely similar occur-
rence rates of the weather regimes prior to and during ENS events. Both model formu-



lations identify the same critical moments, indicating that cost plays no role for possi-
ble occurrence of an ENS events.

4 Limitations and discussion

The relation found between ENS events and the weather regimes is in line with pre-
vious studies (Grams et al., 2017; van der Wiel et al., 2019a; van der Wiel et al., 2019B;
H. C. Bloomfield et al., 2019; Otero et al., 2022; Mockert et al., 2022; Tedesco et al., 2022).
Although changes in the absolute values of risk differ between studies, an increase in risk
during a winter time period high pressure system over Scandinavia or north-west Eu-
rope is seen. Where previous work has focused on the relation between weather regimes
with renewable energy resource generation (Grams et al., 2017; Ravestein et al., 2018)
or the residual load (van der Wiel et al., 2019B; H. C. Bloomfield et al., 2019; Otero et
al., 2022; Mockert et al., 2022; Tedesco et al., 2022), we analysed this relation between
weather regimes and critical situations identified in full power system simulations. The
link between specific weather regimes and ENS can be used to inform policy maker or
grid operators in the choices they make. For instance, when in the long-term forecast
a strong and persistent Scandinavian Blocking is observed, an early warning could be
given to the grid operators to adjust their short-term planning for the likely reduced avail-
ability of the wind and solar resources.

In our study, the analysed period is limited to 28 historical weather years due to
the availability of data. This is slightly shorter than the 30 years normally used when
looking at the impact of weather. By using a dataset with a longer period of consistent
data, the relation between ENS and weather regimes can be better evaluated (H. C. Bloom-
field et al., 2021). At the same time, the analysis presented here covers a significantly
larger number of weather years than used by Transmission System Operators (TSO) in
their European resource adequacy assessments (ENTSO-E, 2021), and ten year network
development plan (TYNDP) scenario assessment (ENTSO-E & ENTSO-G, 2020a). In
line with the recommendations made by Craig et al. (2022), the development of the new
open access version of the Pan-European Climate Database (PECD) (Dubus et al., 2022)
will provide the European T'SOs and other parties with the option to use a longer con-
sistent dataset, covering past and future projections, that allows for similar and more
advanced assessments then were made here.

The limited time-span of the period analysed imposed additional limitations on the
study results, especially related to the uncertainties related to climate system. By only
looking at a short historic period, we cannot adequately assess the aleatoric uncertainty,
the year-to-year variability of weather, of our results. This interannual to multi-decadal
variability of the state of the climate would preferably be addressed to obtain robust re-
sults (Craig et al., 2022). For instance, the combined wind and solar resource shows mul-
tidecadel variability of around 5% (Wohland et al., 2021), which is a similar order of mag-
nitude as the change observed during the challenging weather regimes (see Figure 8). In
addition, the frequency, persistence and transition probabilities of a specific weather regime
varies over decades (Dorrington et al., 2022) and is linked to the state of the El Nino South-
ern Oscilation (ENSO) (S. K. J. Falkena et al., 2022). Consequently, by changing the
specific decades analysed, the absolute values of the risk can differ.

By only looking at historical weather years, no assessment of the impact of climate
change could be made. As the TYNDP scenarios cover different states of future, it would
be better if climate state of the future would be used to drive the weather dependent parts
of the energy system (Craig et al., 2022). However, the climate state of the future is sub-
ject to three very strong sources of uncertainty that would need to be accounted for (Shepherd,
2019). There is uncertainty in the specific pathway to the future and the emissions as-
sociated with this, these could be assessed by using multiple Representative Concentra-
tion Pathways (usually 3-4 RCP’s are used). The epistemic uncertainty in the climate
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response to these emissions could be assessed by comparing the results from different cli-
mate models (depends on the region under consideration, usually 5-12 are used). And
finally, the aleatoric uncertainty can be assessed by looking at a consecutive 30 year pe-
riod. Assessing all three uncertainties for all TYNDP models used here (3 base or 12 with
all adjustments) would require running at least 1350 and upwards to 17280 years through
our Power Sytem Model. Even if a consistent dataset of all weather dependent variables
could be created, this is currently not feasible due to the running time of our simulations
(on a small cluster this takes 20-45 minutes for the ENS Model). Although there is no
agreement on how exactly (Craig et al., 2022), a different approach should thus be used
to assess the impact of climate change.

Because specific modelling choices in the UCED have an effect on the decision vari-
ables and outcomes of the simulation (R. Wuijts et al., 2023), model choices matter. For
instance, the fixed storage level at start and end of the year might limit the use of stor-
age in times of need, although similar assumptions are made in the ENTSO-E (2021).

In addition, the analysed period we use in a single run (8760 hours, or one year) is al-
ready an improvement compared to the two-stage simulation used within the ENTSO-

E (2021). To properly assess the impact of storage and its use during the ENS events

a different start, and thus endpoint, of the simulated year would need to be considered.
In addition, the level of storage defined in the scenarios might be subject to over plant-
ing with respect to the renewable energy resource capacity. As shown by Livingston and
Lundquist (2020) the ability to balance the potential of renewable generation with stor-
age has a limit in the order of hours to a few days and additional storage will likely rarely
be utilised by renewables.

5 Conclusion

The aim of this study was to investigate the relationship between weather regimes
and energy not served (ENS). For this we analysed twelve future European capacity sce-
narios based on 2020 Ten Year Network Development Plan from the European transmis-
sion system operators. For each of these scenarios we simulated an hourly power system
model with weather dependent demand and renewable energy generation from 28 his-
toric weather years.

The different scenarios show slightly different results, but most ENS events occur
in the period from December to March. We find that most bidding zones have a partic-
ular weather regime that causes the most ENS events. However, an ENS event can still
occur in all regions during any weather regime but with a smaller probability. Different
scenarios show some variation, but the weather regime associated most with an ENS event
for a region is consistent across the scenarios analysed.

For western European bidding zones, ENS events tend to coincide with the pos-
itive Scandinavian Blocking (SB+) and positive North Atlantic Oscillation (NAO+) weather
regime. During the SB+ weather regime persistent cold and calm weather is observed,
leading to an increased electricity demand in conjunction with a decreased wind and so-
lar energy potential, which leads to high residual loads. While the NAO+ regime is as-
sociated with stronger westerly flow, and thus increased wind energy potential in Scan-
dinavia, it is associated with ENS events in central Europe. This could be due to the ob-
served prevalence of SB+ in the 10+ days prior to an ENS event in these regions. While
storage utilisation is increased significantly, storage levels are not depleted on average
during this weather regime.

For Scandinavian and Baltic countries, the results indicate that the negative At-
lantic Ridge (AR-) weather regime is more likely to be present during and leading up
to ENS events. During the AR~ weather regime the calm, sunny and cold weather in north-
eastern Europe leads to a slightly increased demand in these regions. A significant de-
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crease in charging of the storage system, and the of storage level of most regions is ob-
served. This combination likely drives the ENS events in this region.

To conclude, this article shows a clear correlation between specific weather regimes
and unserved energy for some European countries. We found that the period preceding
an ENS event is important. This indicates that for some ENS events a build-up is re-
quired, and this illustrates the variable nature of the energy system.
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Appendix B Open Research

The ERA5 data used for to obtain the RES potentials in this study are available
at the Climate Data Store via https://www.doi.org/10.24381/cds.adbb2d47 under
the License to use Copernicus Products (Hersbach et al., 2018, 2020). The implemen-
tation of the conversion models from meteorological variables to renewable energy gen-
eration potential used in the study are available at Github via https://github.com/
laurensstoop/CapacityFactor-CF and https://github.com/laurensstoop/EnergyVariables
with the MIT license. The Electricity Demand data used within the analysis is available
at Zenodo via https://www.doi.org/10.5281/zenodo.5780184 with the CC 4.0 license (De Fe-
lice, 2021). The RES generation and demand data used in this study are available at ZEN-
ODO via https://www.doi.org/10.5281/zenodo.7390479 with CC BY-SA 4.0 (Stoop,
2022).

All the capacity data used and information about their origin is included in an on-
line dataset at https://github.com/rogierhans/TYNDP2040ScenarioData.

The Weather Regime data used for the categorisation of weather in the study are
available upon request from dr. S.K.J. Falkena or the specific weather regime definition
used for the period 1982-2010 used here from https://github.com/laurensstoop/weatherregimes/
data/processed/WR_k6_combo.csv with the MIT license. The method describing their
creation is presented in (S. K. Falkena et al., 2020) and the original implemented code
can be found on https://github.com/SwindaKJ/Regimes Public.

A web-application to get the raw sub-basin hydro inflow data underlying our ag-
gregation is can be found at SMHI HypeWeb via https://hypeweb.smhi.se/explore
-water/historical-data/europe-time-series with the CC BY-SA 4.0 license (?, 7).
The daily hydro inflow data aggregated to country level used for the availability of the
hydropower plants, run-of-river hydropower plants and pumped storage hydropower plants
in the study will become available at Zenodo via https://www.doi.org/10.5281/zenodo
.7766457 with the CC BY-SA 4.0 license. The data archiving for this is underway, but
the current file structure and size, single file of 50GB, is not usable on most systems.
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Appendix C Region definition and naming convention

The bidding zone codes of the bidding zones used is shown in Table C1, and their
spatial location in Figure C1.

Table C1: Mapping between bidding zone codes and countries.

ATO00 Albania FR15 France NLO0O0 Netherlands
ATO00 Austria HRO00 Croatia NOM1 Norway
BAO0O Bosnia HU00 Hungary NONI1 Norway
BEO0O Belgium TE00 Ireland NOSO Norway
BGO00 Bulgaria ITCN Italy PL00 Poland
CHO0 Switzerland ITCS Italy PT00 Portugal
CYO00 Cyprus ITN1 Ttaly ROO00 Romania
CZ00  Czech Republic | ITS1 Italy RS00 Serbia
DEO00 Germany ITSA Italy SE01 Sweden
DKE1 Denmark ITSI Italy SE02 Sweden
DKKF Denmark LT00 Lithuania SE03 Sweden
DKW1 Denmark LUB1 Luxemburg SE04 Sweden
EE00 Estonia LUF1 Luxemburg SI00 Slovenia
EL00 Greece LUGI1 Luxemburg SKO00 Slovakia
EL03 Greece LV00 Latvia TROO Turkey
ES00 Spain MEO0 Montenegro UAO01 Ukraine
FI00 Finland MKOO North Macedonia | UKOO  United Kingdom
FROO France MTO00 Malta UKNI  United Kingdom

27—



manuscript submitted to Farth’s Future

Belarus

Ukraine

Figure C1: Location of the bidding zones used in this study. Figure provided by ENTSO-
E.
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Appendix D Specified capacity of the main bidding zones used

The specific installed capacities for the main bidding zones used in the analysis are
shown in Figure D1. The technologies are clustered based on their core principle in Hy-
dro, Other, Solar, Thermal and Wind. The zones shown are the central European sub-
set represented by Germany (DE00), France (FR00) and the Netherlands (NL00), and
the Scandinavian countries represented by the southern region of Norway (NOM1) and
the northern region of Sweden (SE01). For the Scandinavian countries any region in Nor-
way or Sweden could be used, for simplicity the first zone was thus chosen.

DE0O FROO
150~ 100-

100-

Onshore 50- Onshore
Solar PV § Nuclear

50-
25-
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= e
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Type
Figure D1: Installed capacity for a subset of bidding zones in the TYNDP Distributed

Energy 2040 scenario is shown. The technologies listed are clustered according to their
driving principle.
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Appendix E Unit Commitment Model

In this section, we define the Unit Commitment and Economic Dispatch (UCED)
model that we use in this paper. Our UCED description is based on a Mixed Integer Lin-
ear Program (MILP) formulation with detailed thermal generators, Renewable Energy
Sources (RES), storage, and transmission lines. The decision variables pg¢, pre, pst are
the generation of thermal generator (g), RES (s), and storage (s) unit at time step ¢. Other
variables are added to narrow down the feasible state space of these variables. We use
the well-known 3-bin formulation (Knueven et al., 2020) which is given in:

min Z Z VOLL -ENS,; + Z aglgt + bgPgt + VgtCOStstart (E1)

teT neN geG
s.t.
pgt = ugly, g€ Gt eT (E2)
pgt < Pyugi,g € Gt €T (E3)

t

Z vg; Sug,t €T, g€ G (E4)

i=t—UT,+1
t

Z wg <1—ug,teT,gel (E5)
i=t—DT,+1
Pgt — Pgt—1 < (SUy — RUG)vge + RUgug, t > 2,9 € G (E6)
pgt_l *pgt S (SDg — RDg)U)gt -+ RDgugt_l,t 2 2,9 S G (E?)
DPrt S AFrtﬁf’ta (S Ra teT (ES)
0<pcy <PCs,teT,seS (E9)
0<pdyg <PD,,tecT,seS (E10)
Pst = pdst _pcst7t € Ta seS (Ell)
PE, <pey <PE, teT,s€S (E12)

ds
Dest = Pest—1 + PCst * Ny — p—dt,t eT,se S (E13)
nst
ingne= Y.  fut€T,neN (E14)
l=(n'"—n),n'€N
fi<fe<hleLtel (E15)
S byt > bt S P+ inju =Du — ENSut e Tine N (E16)

geGy, reR, sES,
Ugt — Ugt—1 = Vgt — Wgr,t €T, 9 € G (E17)
Ugtv Ugh wgt € {Oa 1}apgtaprt7pst;pesta injnta flt S R (Elg)

(E1) is the objective function of the UC consisting the system wide cost of Energy not
Served (ENS) times the Value of Lost Load (VOLL) and the generation cost and start
cost, ay is the constant cost and b, is the linear cost coefficient. Constraint (E2) and (E3)
ensure the minimum and maximum production of generators. Constraint (E4) and (E5)
ensure the minimum up and downtime of generators. Constraint (E6) and (E7) ensure
the ramping limits of generators between time steps. Constraint (E8) ensures that the
RES production is lower than the availability at that hour. (E9), (E10) and (E12) en-
sure the charge, discharge, and energy storage limits for storage units. Equation (E11)
is the sum of charge and discharge i.e. the net storage production. Equation (E13) de-
scribes the relation between the charge, discharge, and net power production of a stor-
age unit. Equation (E17) describes the logic between the binary commitment, start and
stop variables of the generators. Equation (E14) describes the relation between the flow
on transmission lines and the power injection at nodes. Constraint (E15) ensures flow
limits on transmission lines. Equation (E16) ensures that the total generation meets the
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total demand at every node and time step. At last, the commitment variables are binary
while the generation are real numbers (E18).

Appendix F Validating Assumptions

We assume that most model characteristics normally included in the unit commit-
ment problem such as ramping limits, minimum uptime, and binary commitment vari-
ables, are unnecessary when you are only interested in energy not served (R. Wuijts et
al., 2023). To validate this assumption, we ran four models with two different objective
functions and two levels of detail to check whether this results in equivalent solutions.
The first objective function minimises ENS directly, and the second one indirectly through
the minimisation of total system costs in which ENS is heavenly penalised with a Value
of Loss of Load (VOLL). Both types of minimisation’s where applied to a full, and a sim-
plified version of the UCED model. In the simplified version the ramping limits, min-
imum uptime, and binary commitment variables are omitted. We ran the four UCED
models in chunks of 720 timesteps at the time for the weather years 1982-2010 and orig-
inal 3 TYNDP scenarios.

We use the following naming convention to indicate the four different models used:

¢ Detailed ENS Model, including ramping limits, minimum up- and downtime and
with binary variables. ENS minimisation.

 Detailed Cost Model, including ramping limits, minimum up- and downtime but
without binary variables. Cost minimisation.

« ENS Model, simplified model without binary variables. ENS minimisation.

« Cost Model, simplified model without binary variables. Cost minimisation.

The results, see Table F1, show that in all models the average ENS is almost the
same. Moreover, the individual differences in all instances are smaller than 1 MWh, a
negligible percentage of the total demand. The average computation time per weather
year for these models differs significantly. As expected, a simplified model with ENS min-
imisation is significantly faster than running the model with more detail. Consequently,
as the solution metrics that are relevant for our analysis (EENS) are the same, this is
the preferred model to use as it allows us to run many power system configurations and
weather years in order to get robust results.

Table F1: For the four different model formulations, the averaged total ENS in the sys-
tem, the maximum difference in ENS of model run on a single weather compared to the
average ENS of the same year and the average computation time of a year are shown.
The average is calculated over all 720 hour chunks for the weather years 1982-2010.

Model ‘ Detailed ENS  Detailed Cost ENS Cost

Average ENS (MWh) 5246374.8 5246375.0 5246374.8  5246374.9
Max difference (MWh) 0.28 0.61 0.28 0.22
Avg. Computation time (s) 1051.9 593.6 52.7 190.9
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Appendix G Method for determining photovoltaic panel generation
potential

To obtain the solar photovoltaic potential generation, we follow the method as set
out by Jerez et al. (2015) Explicitly, the potential PV, is calculated by formula (G1).

I
PVyor = Pr
Istd

(G1)

where I is the short-wave downward radiation at the surface, Is4 is the incoming short-
wave downward radiation under the standard test condition for solar photovoltaic cells
(Istq = 1000 W/m?) and the performance ratio is given by Pg.

The performance ratio can be modelled in a number of ways (Jerez et al., 2015).
Here, see Eq. (G2), we take into account the cooling effect of the wind on a solar panel
cell temperature, which in turn is also influenced by the irradiance and the ambient air
temperature, see Eq. (G3).

PR =1+ Y (Tcell - T’r‘ef) (G2)

where v = —0.5 %°C and the Trey = 25 °C is the standard test condition tempera-
ture for photovoltaic cells. The cell temperature T,.;; is modeled by formula (G3).

Teet = c1 + 2T + csl +c4V (G?))

where T is the air temperature around the cell, I the short-wave downward irradiance
on the cell and V' the wind around the cell. The constants ¢; to ¢4 have been determined
by TamizhMani et al. (2003) to be ¢; = 4.3 °C, co = 0.943, c3 = 0.028 °C m? W!
and ¢y = —1.528 °C s m™!.

Appendix H Method for determining wind turbine generation poten-
tial

To convert windspeeds to wind turbine generation potential we use an adjusted ver-
sion of the power curve method from (Jerez et al., 2015). We made three adjustments
to this model. First, we reduced the effective capacity factor (C'F,) with 5% to 95% to
represent the wake losses in large scale wind-farms. Secondly, we introduce a linear de-
cay in the capacity factor at high wind speeds to more accurately represent high wind-
speed operational conditions. The third change was that we tuned the power curve regimes.
Equation (H1) gives the capacity factor for wind turbines (C'Finq) used in this study.

0 if V(t) < Ver,
VO VEr i Yo < V() < Vi,
VR VCI
CFyina(t) = CFe x {1 if  VR<V(t) < Vp, (H1)
Yeor¥) if v < V(1) < Veo,
0 if V(t) > Veo.

Here V (t) is the wind speed at the height of the wind turbine and the power curve regimes
are given by the cut-in (Vor=3 m/s), rated (Vg= 11 m/s), decay (Vp= 20m/s) and cut-
out (Voo= 25m/s) wind speed. The windspeed provided by ERA5 (at 100 meter) did

not match the hub height for the wind turbines used in the TYNDP scenario. Using the
wind profile power law we scaled the windspeed to 120 and 150 meters for on- and off-
shore turbines. The surface roughness was set to a constant value for both onshore (o =
0.143) and offshore regions (o = 0.11) in line with the reported values in Hsu et al. (1994).
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Appendix I Method for determining Hydropower generation poten-
tial

The hydro inflow data are based on historical river runoff reanalysis data simulated
by the E-HYPE model (Donnelly et al., 2016). E-HYPE is a pan-European model de-
veloped by The Swedish Meteorological and Hydrological Institute (SMHI), which de-
scribes hydrological processes including flow paths at the subbasin level. A subbasin in
the context of hydrology is the region from which all surface run-off flows through to a
particular point, this is generally a the collection of upstream streams, rivers and lakes.

E-hype only provides the time series of daily river runoff (in m®/s) entering the in-
let of each European subbasin over 1980-2010. To match the operational resolution of
the dispatch model, we linearly downscale the time series to hourly. By summing up runoff
associated with the inlet subbasins of each country, we also obtain the country-level river
runoff.

The hydro inflow time series per country as inputs of the dispatch model is defined
in this study as normalized energy inflows (per unit installed capacity of hydropower)
embodied in the country-level river runoff. Therefore, it resembles an input capacity fac-
tor time series that can be extracted from water (CFW;). The UCED model decides whether
the energy inflows are actually used for electricity generation, stored, or spilled (in case
the storage reservoir is already full). The hydro inflows CFW; at a given time ¢ is pro-
portional to the instantaneous river runoff Q;:

Q:

CFWt == Q
avg

CFWang (I1)

Where Q404 is the long-term average river runoff and CFW,,, is the corresponding av-
erage energy inflow. However, the long-term average data of CFW,vg are not available
and cannot be calculated due to the lack of plant-level hydrological details such as hy-
draulic head; active storage volume. For practical reasons, we use the long-term capac-
ity factors based on the actual electricity outputs of aggregated hydropower plants to
replace CF'Wy,,. They can be calculated based on the average of reported yearly ca-
pacity factors C'Fy,,, (Eurostat, 2021). The calculation would be ideally carried out for
the entire 30-year period 1980-2010, but yearly capacity factors reported for many Eu-
ropean countries are not readily available prior to 1990. Therefore, we calculated the ra-
tio between the CFW,vg and Q.4 for the period 1990-2010 and used it as a scalar for
the entire 30-year @); time series.

In reality C'Fy,y may be smaller than C'F'W,,4, because not all energy embedded
in the river runoff is always converted into electricity due to spillage or non-energy us-
age. As a result, the values in the CFW; time series used as inputs in the UCED model
may be underestimated.

We explicitly consider three types of hydropower plants, namely storage hydropower
plant (STO), run-of-river hydropower plant (ROR) and pumped storage hydropower plant
(PHS). For modelling purposes, we need to estimate the specific maximum energy stor-
age content (or specific storage size [%W]), for each type of hydropower. This is per-
formed by deriving an EU-average specific energy storage content % per hydropower
type based on an in-house database containing 207 large power plants. The derived spe-
cific energy storage content is calibrated to the present level of total storage size (220 TWh)
of STO, RoR, and PHS together in Europe reported by (Mennel et al., 2015). The re-

sulting specific energy storage contents for STO, RoR and PHS are 2.05, 0.43 and 0.18
GWh
MW
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Appendix J Classification of weather into regimes

To classify the European winter time period meteorological variability at the syn-
optic scale, a number of different criteria can be used. Although this classification is gen-
erally according to the anomaly of the geopotential height at the 500 hPa level, they have
a strong relation with the variability at the surface (Grams et al., 2017; Thornton et al.,
2017; H. C. Bloomfield et al., 2019). Recently the Grosswetterlagen method (Baur et al.,
1944) has gained more traction due to the use of machine learning to classify the weather (Neal
et al., 2016). However, the large number of regimes used limits the interpretability of a
single regime (Neal et al., 2016; S. K. Falkena et al., 2020). For this reason, the use of
the four European weather regimes based on a k-means clustering as set out in Michelangeli
et al. (1995) is still prevalent in many impact studies (e.g. when considering the impact
of the variability of weather on the renewable energy resource (van der Wiel et al., 2019B;
H. C. Bloomfield et al., 2019; Otero et al., 2022; Tedesco et al., 2022)). On the other hand,
when only four weather regimes are used to describe the full variability in surface weather,
it is difficult to separate partially mixed signals that are present due to the course clas-
sification of the meteorological variability (Grams et al., 2017).

The use of four regimes to classify the winter time period weather in Europe is mostly
due to the initial work by Michelangeli et al. (1995) on using k-means clustering on the
first few empirical orthogonal functions of the geopotential height at the 500hPa level.
While the granularity of the meteorological data has increased by 3-orders since then.
Recently, S. K. Falkena et al. (2020) revisited the identification of European weather regimes.
They found that when the full field data is used, instead of only the first few empirical
orthogonal functions, the optimal number of weather regimes is six when looking at the
Bayesian Information Criterion. In addition, they show that by incorporating a weak per-
sistence constraint instead of using a low-pass filter to stabilise the regime identification,
the classification of a specific regime cluster is better and thus more defined.
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Appendix K Summary of relative occurrence of weather regimes for
all bidding zones

An overview of the relative occurrence of the weather regimes in the 1, 10 and 30
days prior to an ENS event for all bidding zones and scenarios is provided in figures K1,
K2 and K3.
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Figure K1: For each bidding zone and for all 12 scenarios the occurrence of weather
regimes within a 1 day period before the ENS event.
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Figure K2: For each bidding zone and for all 12 scenarios the occurrence of weather
regimes within a 10 day period before the ENS event.
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Figure K3: For each bidding zone and for all 12 scenarios the occurrence of weather
regimes within a 30 day period before the ENS event.
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Appendix L Meteorological changes between different weather regimes

An overview of anomaly in the wind speed at 100 meter height, solar irradiance and
air temperature at 2 meter height over Europe can be found in Figures L1, L2, and L3,
respectively. The anomaly in solar photovoltaic potential is shown in Figure L4, the anomaly
of the wind turbine potential was provided in Figure 7.

Figure L1: The average 100 meter windspeed anomaly from December to March (DJFM)
in Europe for each weather regime with respect to the DJFM mean over 1982-2010.

Figure L2: The average solar irradiance anomaly from December to March (DJFM) in
Europe for each weather regime with respect to the DJFM mean over 1982-2010.
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Figure L3: The average 2 meter air temperature anomaly from December to March

(DJFM) in Europe for each weather regime with respect to the DJFM mean over 1982-
2010.

Figure L4: The average solar photovoltaic power generation anomaly from December to

March (DJFM) in Europe for each weather regime with respect to the DJFM mean over
1982-2010.
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