120 research outputs found

    Pantoea agglomerans-Induced Dieback in Pistachio in Chile

    Get PDF
    Pistachio crops have a great economic potential, as their global production has increased dramatically over the past few decades. Therefore, it is important to maintain the healthy phytosanitary status of pistachio crops. In a Chilean pistachio orchard, a dieback of the trees was observed, with blighting of twigs and severe necrosis in the trunk and twigs. Bacterial isolation, pathogenicity tests and molecular characterization were conducted to determine the causal agent of the observed disease. The bacterial isolation and analysis of 16S rRNA gene led to the identification of Pantoea genus bacteria. Pathogenicity tests carried out on fruits inoculated with Pantoea isolates induced large necrosis seven days post-inoculation. Further inoculations were carried out on pruning cuttings and on the trunk of 18-month-old pistachio plants. Thirty-one weeks after inoculation, necrotic lesions were observed in the wood of pistachio plants. Sequence analysis of housekeeping genes enabled the isolated bacterium to be identified as Pantoa agglomerans, and to verify its role as the causal agent of the pistachio dieback with necrotic lesions. This is the first report of an occurrence of P. agglomerans inducing dieback in pistachio

    First report of cherry virus a and plum bark necrosis stem pitting-associated virus in cherry in Chile

    Get PDF
    Stone fruits rank third among the most important crop species in Chile, after grapevine and apple. Specifically, cherry (Prunus avium L.) cultivation have increased during the last 10 years, making of Chile the most important exporter in the Southern hemisphere. Nineteen cherry samples collected in the spring of 2016 were subjected to high-throughput sequencing (HTS) analyses. Small RNA extracts were obtained following the protocol described by Giampetruzzi et al. (2012). Sequencing libraries were prepared using TruSeq smallRNA library preparation kit (Illumina Inc.) and sequenced on Illumina HiScanSQ platform. Trimming and de novo assembly of sequenced reads using CLC genomics workbench v7.0 were carried out, and the obtained contigs were analyzed with BLAST. One sample presented 131 contigs that showed homology with the Plum bark necrosis stem pitting-associated virus (PBNSPaV) reference sequence with accession no. EF546442. The alignment of nine PBNSPaV complete genome references allowed the design of two primer pairs specific for the RdRp gene (PBN-RdRp-F 5?-CTTATTATTGTGCTGAAGTTGATCT-3?/PBN-RdRp-R 5?-TGGAAAAGTATTGAGTCATCACC-3?) and a partial region of CP gene (PBN-CP-F 5?-GAGGCAATGGATGAGGAA-3?/PBN-CP-R 5?-TCTTCCACCGGACTGATTA-3?) to be used in RT-PCR. The RdRp (KY887573) and CP (KY887574) sequences amplified from isolate 10381 shared 99 and 97% identity with reference isolate WH1 (KJ792852) from China and the PBNSPaV type-strain (EF546442) from the U.S.A., respectively. In addition, the HTS analysis showed that 14 out of 19 cherry samples have several contigs showing homology with Cherry virus A (CVA) reference sequence. Two primer pairs (CVAF1 5?-CAATGTTGTTGACAATTCCCAC-3?/CVAR1 5?-CCTACATGAATTTGACCTAAACAAA-3?; CVAF2 5?-ACTGCAGAGAAAACAACTGCC-3?/CVAR2 5?-AGGCCCCTTCTTATCTCGTT-3?) were designed based on the alignment of CVA complete genomes database with the sequences obtained from Chilean isolates. CVA infection was confirmed via RT-PCR in all 14 cherry trees using both primer pairs. BLASTn analysis of the two amplification products of CVA from isolate 10596 (KY887575, KY887577) showed 99% of identity with the isolate Lambert (KU215410) from Czech Republic and the same amplicons obtained from isolate 10395 (KY887576, KY887578) showed 99% of identity with the isolate ChTA12 from China (KT310083). To our knowledge, this is the first report of CVA and PBNSPaV infecting cherry in Chile and South America. Further analyses are in progress in order to determine the prevalence of these viruses in the main cherry producing areas of Chile

    First detection of Grapevine rupestris stem pitting-associated virus and Grapevine rupestris vein feathering virus, and new phylogenetic groups for Grapevine fleck virus and Hop stunt viroid isolates, revealed from grapevine field surveys in Spain

    Full text link
    [EN] Evaluation of the prevalence of virus and viroid infections was conducted in a grapevine field collection in Valencia, Spain. Samples of autochthonous and traditional grapevine cultivars were collected during November 2011 and tested for the presence of fourteen viruses and five viroids, using RT-PCR. The prevalent viruses were Grapevine rupestris stem pitting-associated virus (GRSPaV: 49% infected samples) and Grapevine leafroll-associated virus 2 (GLRaV-2: 15% of samples). GLRaV-1, GLRaV-3, GLRaV-4 (variants 4 and 5), Grapevine fanleaf virus, Grapevine fleck virus (GFkV), Grapevine rupestris vein feathering virus (GRVFV) and Grapevine virus A were also detected. Hop stunt viroid (HSVd: 92% of plants infected) and Grapevine yellow speckle viroid 1 (6% of plants) were also detected. Mixed infections with two, and up to six different viruses and/or viroids were common. Only five samples (4%) were free from 19 pathogens tested. This is the first report of GLRaV-4 (variants 4 and 5) in the Valencia region of Spain, and the first record of GRSPaV and GRVFV in this country. Phylogenetic analyses performed with the sequences of these viruses showed that the Spanish isolates of GLRaV-4, GFkV and HSVd belong to new phylogenetic groups.This study was supported by Projects Consejo Superior de Investigaciones Científicas CSIC (2010CL0021) and BIO2011-25018 from the Spanish MINECO / UNIVERSIDAD DE CHILE 04/11-2 and 2010CL0021Fiore, N.; Zamorano, A.; Sánchez Diana, N.; González, X.; Pallás Benet, V.; Sanchez Navarro, JA. (2016). First detection of Grapevine rupestris stem pitting-associated virus and Grapevine rupestris vein feathering virus, and new phylogenetic groups for Grapevine fleck virus and Hop stunt viroid isolates, revealed from grapevine field surveys in Spain. Phytopathologia Mediterranea. 55(2):225-238. https://doi.org/10.14601/Phytopathol_Mediterr-15875S22523855

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p

    A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by Prunus necrotic ringspot virus and Peach latent mosaic viroid

    Get PDF
    [EN] Background: Microarray profiling is a powerful technique to investigate expression changes of large amounts of genes in response to specific environmental conditions. The majority of the studies investigating gene expression changes in virus-infected plants are limited to interactions between a virus and a model host plant, which usually is Arabidopsis thaliana or Nicotiana benthamiana. In the present work, we performed microarray profiling to explore changes in the expression profile of field-grown Prunus persica (peach) originating from Chile upon single and double infection with Prunus necrotic ringspot virus (PNRSV) and Peach latent mosaic viroid (PLMVd), worldwide natural pathogens of peach trees. Results: Upon single PLMVd or PNRSV infection, the number of statistically significant gene expression changes was relatively low. By contrast, doubly-infected fruits presented a high number of differentially regulated genes. Among these, down-regulated genes were prevalent. Functional categorization of the gene expression changes upon double PLMVd and PNRSV infection revealed protein modification and degradation as the functional category with the highest percentage of repressed genes whereas induced genes encoded mainly proteins related to phosphate, C-compound and carbohydrate metabolism and also protein modification. Overrepresentation analysis upon double infection with PLMVd and PNRSV revealed specific functional categories over- and underrepresented among the repressed genes indicating active counter-defense mechanisms of the pathogens during infection. Conclusions: Our results identify a novel synergistic effect of PLMVd and PNRSV on the transcriptome of peach fruits. We demonstrate that mixed infections, which occur frequently in field conditions, result in a more complex transcriptional response than that observed in single infections. Thus, our data demonstrate for the first time that the simultaneous infection of a viroid and a plant virus synergistically affect the host transcriptome in infected peach fruits. These field studies can help to fully understand plant-pathogen interactions and to develop appropriate crop protection strategies.We thank Drs M.A. Perez-Amador y J. Gadea for helping in the result analysis. This work was supported by grant BIO2011-25018 from the Spanish granting agency Direccion General de Investigacion Cientifica for the transcriptomic analyses and from the grant 2009CL0020 from the bilateral project INIA-Chile/CSIC-Spain for the phytosanitary evaluation. MC Herranz was the recipient of a contract from the Juan de la Cierva program of the Ministerio de Educacion y Ciencia of Spain.Herranz Gordo, MDC.; Niehl, A.; Rosales, M.; Fiore, N.; Zamorano, A.; Granell Richart, A.; Pallás Benet, V. (2013). A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by Prunus necrotic ringspot virus and Peach latent mosaic viroid. Virology Journal. 10:11-15. https://doi.org/10.1186/1743-422X-10-164S111510Pallas V, Garcia JA: How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 2011, 92: 2691-2705.Whitham SA, Yang C, Goodin MM: Global impact: elucidating plant responses to viral infection. Mol Plant Microbe Interact 2006, 19: 1207-1215.Havelda Z, Varallyay E, Valoczi A, Burgyan J: Plant virus infection-induced persistent host gene downregulation in systemically infected leaves. Plant J 2008, 55: 278-288.Aranda M, Maule A: Virus-induced host gene shutoff in animals and plants. Virology 1998, 243: 261-267.Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM: Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 2003, 33: 271-283.Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S: Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J 2007, 51: 941-954.Hadidi A, Barba M: Economic impact of pome and stone fruit viruses and viroids. In Virus and Virus Like Diseases of Pome and Stone Fruits. Edited by: Hadidi A, Barba M, Candresse T, Jelkmann W. St Paul, MN: American Phytopathological Society; 2011:1-8.Flores R, Delgado S, Rodio ME, Ambros S, Hernandez C, Serio FD: Peach latent mosaic viroid: not so latent. Mol Plant Pathol 2006, 7: 209-221.Pallas V, Aparicio F, Herranz MC, Amari K, Sanchez-Pina MA, Myrta A, Sanchez-Navarro JA: Ilarviruses of Prunus spp.: A continued concern for fruit trees. Phytopathology 2012,102(12):1108-1120.Rowland O, Jones JD: Unraveling regulatory networks in plant defense using microarrays. Genome Biol 2001,2(1):1001.1-1001.3.Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM: Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 2005, 79: 2517-2527.Senthil G, Liu H, Puram VG, Clark A, Stromberg A, Goodin MM: Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. J Gen Virol 2005, 86: 2615-2625.Marathe R, Guan Z, Anandalakshmi R, Zhao H, Dinesh-Kumar SP: Study of Arabidopsis thaliana resistome in response to cucumber mosaic virus infection using whole genome microarray. Plant Mol Biol 2004, 55: 501-520.Agudelo-Romero P, Carbonell P, de la Iglesia F, Carrera J, Rodrigo G, Jaramillo A, Perez-Amador MA, Elena SF: Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virol J 2008, 5: 92.Itaya A, Matsuda Y, Gonzales RA, Nelson RS, Ding B: Potato spindle tuber viroid strains of different pathogenicity induces and suppresses expression of common and unique genes in infected tomato. Mol Plant Microbe Interact 2002, 15: 990-999.Huang Z, Yeakley JM, Garcia EW, Holdridge JD, Fan JB, Whitham SA: Salicylic acid-dependent expression of host genes in compatible Arabidopsis-virus interactions. Plant Physiol 2005, 137: 1147-1159.Rizza S, Conesa A, Juarez J, Catara A, Navarro L, Duran-Vila N, Ancillo G: Microarray analysis of Etrog citron (Citrus medica L.) reveals changes in chloroplast, cell wall, peroxidase and symporter activities in response to viroid infection. Mol Plant Pathol 2012,13(8):852-864.Golem S, Culver JN: Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Mol Plant Microbe Interact 2003, 16: 681-688.Dardick C: Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. Mol Plant Microbe Interact 2007, 20: 1004-1017.Hull R: In Matthews’ Plant Virology. London: Edited by Academic Press; 2002.Gonzalez-Jara P, Tenllado F, Martinez-Garcia B, Atencio FA, Barajas D, Vargas M, Diaz-Ruiz J, Diaz-Ruiz JR: Host-dependent differences during synergistic infection by Potyviruses with potato virus X. Mol Plant Pathol 2004, 5: 29-35.Gonzalez-Jara P, Atencio FA, Martinez-Garcia B, Barajas D, Tenllado F, Diaz-Ruiz JR: A Single Amino Acid Mutation in the Plum pox virus Helper Component-Proteinase Gene Abolishes Both Synergistic and RNA Silencing Suppression Activities. Phytopathology 2005, 95: 894-901.Vance VB: Replication of potato virus X RNA is altered in coinfections with potato virus Y. Virology 1991, 182: 486-494.Garcia-Marcos A, Pacheco R, Martianez J, Gonzalez-Jara P, Diaz-Ruiz JR, Tenllado F: Transcriptional changes and oxidative stress associated with the synergistic interaction between Potato virus X and Potato virus Y and their relationship with symptom expression. Mol Plant Microbe Interact 2009, 22: 1431-1444.Postnikova OA, Nemchinov LG: Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virol J 2012, 9: 101.Zanchin A, Bonghi C, Casadoro G, Ramina A, Rascio N: Cell enlargement and cell separation during peach fruit development. International Journal of Plant Science 1994, 155: 49-56.Herranz MC, Sanchez-Navarro JA, Aparicio F, Pallas V: Simultaneous detection of six stone fruit viruses by non-isotopic molecular hybridization using a unique riboprobe or ‘polyprobe’. J Virol Methods 2005, 124: 49-55.Pallas V, Mas P, Sanchez-Navarro JA: Detection of plant RNA viruses by nonisotopic dot-blot hybridization. Methods Mol Biol 1998, 81: 461-468.Lilly ST, Drummond RS, Pearson MN, MacDiarmid RM: Identification and validation of reference genes for normalization of transcripts from virus-infected Arabidopsis thaliana. Mol Plant Microbe Interact 2011, 24: 294-304.Cosgrove JD: Expansive growth of plant cell walls. Plant Physiol Biochem 2000,38(1–2):109-124.Tessitori M, Maria G, Capasso C, Catara G, Rizza S, De Luca V, Catara A, Capasso A, Carginale V: Differential display analysis of gene expression in Etrog citron leaves infected by Citrus viroid III. Biochim Biophys Acta 2007, 1769: 228-235.Rizza S, Capasso C, Catara A, Capasso A, Conte E, Catara A Proceedings of the 17th Conference of the International Organization of Citrus Virologists-IOCV, pp. XVII. In Transcriptional response of Troyer citrange, sour orange and alemow rootstocks to Citrus viroid IIIb (CVd-IIIb) infection. Adana, Turkey: Conference of the International Organization of Citrus Virologists; 2010:142-149. http://www.ivia.es/iocv/Owens RA, Tech KB, Shao JY, Sano T, Baker CJ: Global analysis of tomato gene expression during Potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling. Mol Plant Microbe Interact 2012, 25: 582-598.Ogundiwin EA, Marti C, Forment J, Pons C, Granell A, Gradziel TM, Peace CP, Crisosto CH: Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol Biol 2008, 68: 379-397.Sánchez-Navarro JA FA, Rowhani A, Pallás V: Comparative analysis of ELISA, nonradioactive molecular hybridization and PCR for the detection of Prunus necrotic ringspot virus in herbaceous and prunus host. Plant Pathol 1998, 47: 780-786.Astruc N, Marcos JF, Macquaire G, Candresse T, Pallas V: Studies on the diagnosis of hop stunt viroid in fruit trees: Identification of new hosts and application of a nucleic acid extraction procedure based on non-organic solvents. Eur J Plant Pathol 1996, 102: 837-846.Myrta A, Di Terlizzi B, Pallas V, Savino V: Viruses and viroids of apricot in the Mediterranean: incidence and biodiversity. Acta Horticulturae 2006, 701: 409-417.Bouzayen M, Latché A, Nath P, Pech JC: Mechanism of fruit ripening. In Plant Developmental Biology- Biotechnological Perspectives: Volume I Edited by: Pua EC, Darvey MR. 2010, 319-339. Chapter 16Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, T P: The use of microarray mPEACH 1.0 to investigate transcriptome changes during transition from pre-climateric to climacteric phase in peach fruit. Plant Sci 2006, 170: 606-613.Lombardo VA, Osorio S, Borsani J, Lauxmann MA, Bustamante CA, Budde CO, Andreo CS, Lara MV, Fernie AR MFD: Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiol 2011,157(4):1696-1710.Manganaris GA RA, Bassi D, Geuna F, Ramina A, Tonutti P, Bonghi C: Comparative transcript profiling of apricot (Prunus armeniaca L.) fruit development and on-tree ripening. Tree Genet Genomes 2011, 7: 609-616.Uyemoto JK, Scott SW: Important diseases of Prunus caused by viruses and other graft-transmissible pathogens in California and South Carolina. Plant Dis 1992, 76: 5-11.Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, et al.: Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 2005, 310: 121-125.Paponov IA, Paponov M, Teale W, Menges M, Chakrabortee S, Murray JA, Palme K: Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 2008, 1: 321-337.Padmanabhan MS, Goregaoker SP, Golem S, Shiferaw H, Culver JN: Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J Virol 2005, 79: 2549-2558.Padmanabhan MS, Shiferaw H, Culver JN: The Tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins. Mol Plant Microbe Interact 2006, 19: 864-873.Padmanabhan MS, Kramer SR, Wang X, Culver JN: Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: reprogramming the auxin response pathway to enhance virus infection. J Virol 2008, 82: 2477-2485.Kuhn JM, Boisson-Dernier A, Dizon MB, Maktabi MH, Schroeder JI: The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol 2006, 140: 127-139.Whenham RJ, Fraser RSS, Brown LP, Payne JA: Tobacco-mosaic-virus-induced increase in abscisic-acid concentration in tobacco leaves: Intracellular location in light and dark-green areas, and relationship to symptom development. Planta 1986, 168: 592-598.Bari R, Jones JD: Role of plant hormones in plant defence responses. Plant Mol Biol 2009, 69: 473-488.Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D: Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 2006, 29: 1033-1048.Mowla SB, Cuypers A, Driscoll SP, Kiddle G, Thomson J, Foyer CH, Theodoulou FL: Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. Plant J 2006, 48: 743-756.Amari K, Diaz-Vivancos P, Pallas V, Sanchez-Pina MA, Hernandez JA: Oxidative stress induction by Prunus necrotic ringspot virus infection in apricot seeds. Physiol Plant 2007, 131: 302-310.Gilroy EM, Hein I, van der Hoorn R, Boevink PC, Venter E, McLellan H, Kaffarnik F, Hrubikova K, Shaw J, Holeva M, et al.: Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant J 2007, 52: 1-13.Kruger J, Thomas CM, Golstein C, Dixon MS, Smoker M, Tang S, Mulder L, Jones JD: A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 2002, 296: 744-747.Bernoux M, Timmers T, Jauneau A, Briere C, De Wit PJ, Marco Y, Deslandes L: RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. Plant Cell 2008, 20: 2252-2264.Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T, Chintha R, Harzen A, Colby T, Kamoun S, van der Hoorn RA: Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. Plant Cell 2008, 20: 1169-1183.Van Esse HP, Van’t Klooster JW, Bolton MD, Yadeta KA, Van Baarlen P, Boeren S, Vervoort J, De Wit PJ, Thomma BP: The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 2008, 20: 1948-1963.Song J, Win J, Tian M, Schornack S, Kaschani F, Ilyas M, van der Hoorn RA, Kamoun S: Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc Natl Acad Sci U S A 2009, 106: 1654-1659.Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S: A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol 2007, 143: 364-377.Rooney H, Van’t Klooster J, Van der Hoorn R, Joosten M, Jones J: Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 2005, 308: 1783-1786.Auger AJ: Tomato ringspot virus associated with brownline disease on prune trees in Chile. Acta Horticulturae 1989, 235: 197-204.Herrera G: Enfermedades causadas por virus en frutales en Chile. Santiago, Chile: Instituto de Investigación Agropecuaria; 2001. Boletín INIA N°52. 65pFiore N, Abou Ghanem-Sabanadzovic N, Infante R, Myrta A, Pallás V: Detection of Peach latent mosaic viroid in stone fruits from Chile. In Option Méditerranéennes, Sér. B/n°45 –Virus ad virus-like disease of stone fruits, with particular reference to the Mediterranean region Edited by: Myrta A, Di Terlizzi B, Savino V. 2003, 143-145.Torres H, Gómez G, Pallás V, Stamo B, Shalaby A, Aouane B, Gavriel I, Kominek P, Caglayan K, Sipahioglu M, et al.: Detection by tissue printing of stone fruit viroids, from europe, the mediterranean and north and south America. Acta Horticulturae 2004, 657: 379-383.Peiró A, Pallás V, Sánchez-Navarro JA: Simultaneous detection of eight viruses and two viroids affecting stone fruit trees by using a unique polyprobe. Eur J Plant Pathol 2012,132(4):469-475.Meisel L, Fonseca B, Gonzalez S, Baeza-Yates R, Cambiazo V, Campos R, Gonzalez M, Orellana A, Retamales J, Silva H: A rapid and efficient method for purifying high quality total RNA from peaches (Prunus persica) for functional genomics analyses. Biol Res 2005, 38: 83-88.Van Gelder RN, Von Zastrow ME, Yool A, Dement WC, Barchas JD JHE: Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A 1990,87(5):1663-1667.Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98: 5116-5121.Sanchez-Navarro JA, Canizares MC, Cano EA, Pallas V: Simultaneous detection of five carnation viruses by non-isotopic molecular hybridization. J Virol Methods 1999, 82: 167-175

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402
    corecore