308 research outputs found

    Increase of enzyme activity through specific covalent modification with fragments

    Get PDF
    Modulation of enzyme activity is a powerful means of probing cellular function and can be exploited for diverse applications. Here, we explore a method of enzyme activation where covalent tethering of a small molecule to an enzyme can increase catalytic activity (k cat/K M) up to 35-fold. Using a bacterial glycoside hydrolase, BtGH84, we demonstrate how small molecule "fragments", identified as activators in free solution, can be covalently tethered to the protein using Michael-addition chemistry. We show how tethering generates a constitutively-activated enzyme-fragment conjugate, which displays both improved catalytic efficiency and increased susceptibility to certain inhibitor classes. Structure guided modifications of the tethered fragment demonstrate how specific interactions between the fragment and the enzyme influence the extent of activation. This work suggests that a similar approach may be used to modulate the activity of enzymes such as to improve catalytic efficiency or increase inhibitor susceptibility

    Analysis of transition state mimicry by tight binding aminothiazoline inhibitors provides insight into catalysis by human : O-GlcNAcase

    Get PDF
    The modification of nucleocytoplasmic proteins with O-linked N-Acetylglucosamine (O-GlcNAc) plays diverse roles in multicellular organisms. Inhibitors of O-GlcNAc hydrolase (OGA), the enzyme that removes O-GlcNAc from proteins, lead to increased O-GlcNAc levels in cells and are seeing widespread adoption in the field as a research tool used in cells and in vivo. Here we synthesize and study a series of tight binding carbohydrate-based inhibitors of human OGA (hOGA). The most potent of these 2′-Aminothiazolines binds with a sub-nanomolar Ki value to hOGA (510 ± 50 pM) and the most selective has greater than 1800000-fold selectivity for hOGA over mechanistically related human lysosomal β-hexosaminidase. Structural data of inhibitors in complex with an hOGA homologue reveals the basis for variation in binding among these compounds. Using linear free energy analyses, we show binding of these 2′-Aminothiazoline inhibitors depends on the pKa of the aminothiazoline ring system, revealing the protonation state of the inhibitor is a key driver of binding. Using series of inhibitors and synthetic substrates, we show that 2′-Aminothiazoline inhibitors are transition state analogues of hOGA that bind to the enzyme up to 1-million fold more tightly than the substrate. These collective data support an oxazoline, rather than a protonated oxazolinium ion, intermediate being formed along the reaction pathway. Inhibitors from this series will prove generally useful tools for the study of O-GlcNAc. The new insights gained here, into the catalytic mechanism of hOGA and the fundamental drivers of potency and selectivity of OGA inhibitors, should enable tuning of hOGA inhibitors with desirable properties

    O-GlcNAcase:promiscuous hexosaminidase or key regulator of O-GlcNAc signalling?

    Get PDF
    O-GlcNAc signaling is regulated by an opposing pair of enzymes: O-GlcNAc transferase installs and O-GlcNAcase (OGA) removes the modification from proteins. The dynamics and regulation of this process are only beginning to be understood as the physiological functions of both enzymes are being probed using genetic and pharmacological approaches. This minireview charts the discovery and functional and structural analysis of OGA and summarizes the insights gained from recent studies using OGA inhibition, gene knock-out, and overexpression. We identify several areas of “known unknowns” that would benefit from future research, such as the enigmatic C-terminal domain of OGA

    A Convenient Approach to Stereoisomeric Iminocyclitols: Generation of Potent Brain‐Permeable OGA Inhibitors

    Get PDF
    Pyrrolidine‐based iminocyclitols are a promising class of glycosidase inhibitors. Reported herein is a convenient epimerization strategy that provides direct access to a range of stereoisomeric iminocyclitol inhibitors of O‐GlcNAcase (OGA), the enzyme responsible for catalyzing removal of O‐GlcNAc from nucleocytoplasmic proteins. Structural details regarding the binding of these inhibitors to a bacterial homologue of OGA reveal the basis for potency. These compounds are orally available and permeate into rodent brain to increase O‐GlcNAc, and should prove useful tools for studying the role of OGA in health and disease

    Pharmacological Inhibition of O-GlcNAcase (OGA) Prevents Cognitive Decline and Amyloid Plaque Formation in Bigenic Tau/APP Mutant Mice

    Get PDF
    Background Amyloid plaques and neurofibrillary tangles (NFTs) are the defining pathological hallmarks of Alzheimer’s disease (AD). Increasing the quantity of the O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification of nuclear and cytoplasmic proteins slows neurodegeneration and blocks the formation of NFTs in a tauopathy mouse model. It remains unknown, however, if O-GlcNAc can influence the formation of amyloid plaques in the presence of tau pathology. Results We treated double transgenic TAPP mice, which express both mutant human tau and amyloid precursor protein (APP), with a highly selective orally bioavailable inhibitor of the enzyme responsible for removing O-GlcNAc (OGA) to increase O-GlcNAc in the brain. We find that increased O-GlcNAc levels block cognitive decline in the TAPP mice and this effect parallels decreased β-amyloid peptide levels and decreased levels of amyloid plaques. Conclusions This study indicates that increased O-GlcNAc can influence β-amyloid pathology in the presence of tau pathology. The findings provide good support for OGA as a promising therapeutic target to alter disease progression in Alzheimer disease

    Methods for the Detection, Study, and Dynamic Profiling of O-GlcNAc Glycosylation

    Get PDF
    The addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine/threonine residues of proteins is a ubiquitous posttranslational modification found in all multicellular organisms. Like phosphorylation, O-GlcNAc glycosylation (O-GlcNAcylation) is inducible and regulates a myriad of physiological and pathological processes. However, understanding the diverse functions of O-GlcNAcylation is often challenging due to the difficulty of detecting and quantifying the modification. Thus, robust methods to study O-GlcNAcylation are essential to elucidate its key roles in the regulation of individual proteins, complex cellular processes, and disease. In this chapter, we describe a set of chemoenzymatic labeling methods to (1) detect O-GlcNAcylation on proteins of interest, (2) monitor changes in both the total levels of O-GlcNAcylation and its stoichiometry on proteins of interest, and (3) enable mapping of O-GlcNAc to specific serine/threonine residues within proteins to facilitate functional studies. First, we outline a procedure for the expression and purification of a multiuse mutant galactosyltransferase enzyme (Y289L GalT). We then describe the use of Y289L GalT to modify O-GlcNAc residues with a functional handle, N-azidoacetylgalactosamine (GalNAz). Finally, we discuss several applications of the copper-catalyzed azide-alkyne cycloaddition “click” reaction to attach various alkyne-containing chemical probes to GalNAz and demonstrate how this functionalization of O-GlcNAc-modified proteins can be used to realize (1)–(3) above. Overall, these methods, which utilize commercially available reagents and standard protein analytical tools, will serve to advance our understanding of the diverse and important functions of O-GlcNAcylation

    O-GlcNAc Modification of tau Directly Inhibits Its Aggregation without Perturbing the Conformational Properties of tau Monomers

    Get PDF
    Abstract The aggregation of the microtubule-associated protein tau into paired helical filaments to form neurofibrillary tangles constitutes one of the pathological hallmarks of Alzheimer's disease. Tau is post-translationally modified by the addition of N-acetyl-D-glucosamine O-linked to several serine and threonine residues (O-GlcNAc). Previously, increased O-GlcNAcylation of tau has been shown to block the accumulation of tau aggregates within a tauopathy mouse model. Here we show that O-GlcNAc modification of full-length human tau impairs the rate and extent of its heparin-induced aggregation without perturbing its activity toward microtubule polymerization. O-GlcNAcylation, however, does not impact the "global-fold" of tau as measured by a Förster resonance energy transfer assay. Similarly, nuclear magnetic resonance studies demonstrated that O-GlcNAcylation only minimally perturbs the local structural and dynamic features of a tau fragment (residues 353-408) spanning the last microtubule binding repeat to the major GlcNAc-acceptor Ser400. These data indicate that the inhibitory effects of O-GlcNAc on tau aggregation may result from enhanced monomer solubility or the destabilization of fibrils or soluble aggregates, rather than by altering the conformational properties of the monomeric protein. This work further underscores the potential of targeting the O-GlcNAc pathway for potential Alzheimer's disease therapeutics

    O-GlcNAc Modification of tau Directly Inhibits Its Aggregation without Perturbing the Conformational Properties of tau Monomers

    Get PDF
    The aggregation of the microtubule-associated protein tau into paired helical filaments to form neurofibrillary tangles constitutes one of the pathological hallmarks of Alzheimer\u27s disease. Tau is post-translationally modified by the addition of N-acetyl-d-glucosamine O-linked to several serine and threonine residues (O-GlcNAc). Previously, increased O-GlcNAcylation of tau has been shown to block the accumulation of tau aggregates within a tauopathy mouse model. Here we show that O-GlcNAc modification of full-length human tau impairs the rate and extent of its heparin-induced aggregation without perturbing its activity toward microtubule polymerization. O-GlcNAcylation, however, does not impact the “global-fold” of tau as measured by a Förster resonance energy transfer assay. Similarly, nuclear magnetic resonance studies demonstrated that O-GlcNAcylation only minimally perturbs the local structural and dynamic features of a tau fragment (residues 353–408) spanning the last microtubule binding repeat to the major GlcNAc-acceptor Ser400. These data indicate that the inhibitory effects of O-GlcNAc on tau aggregation may result from enhanced monomer solubility or the destabilization of fibrils or soluble aggregates, rather than by altering the conformational properties of the monomeric protein. This work further underscores the potential of targeting the O-GlcNAc pathway for potential Alzheimer\u27s disease therapeutics

    Multivalency To Inhibit and Discriminate Hexosaminidases

    Get PDF
    A set of multivalent polyhydroxylated acetamidoazepanes based on ethylene glycol, glucoside, or cyclodextrin scaffolds was prepared. The compounds were assessed against plant, mammalian, and therapeutically relevant hexosaminidases. Multimerization was shown to improve the inhibitory potency with synergy, and to fine tune the selectivity profile between related hexosaminidases

    Homozygous ARHGEF2 mutation causes intellectual disability and midbrain- hindbrain malformation

    Get PDF
    Abstract Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain- hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder. Author summary During brain development, localized gene expression is crucial for the formation and function of specific brain regions. Various groups of proteins are known to regulate segmentation through controlled gene expression, among them, the Rho GTPase regulator family. In this study, we identified a frameshift mutation in the Rho guanine nucleotide exchange factor 2 gene (ARHGEF2) in two children presenting with intellectual disability, mild microcephaly, and a midbrain- hindbrain malformation. This phenotype is also observed in Arhgef2 mutant mice, highlighting the importance of ARHGEF2 across development of distinct mammalian species. We show that loss of Arhgef2 affects neurogenesis and also cell migration. In addition, we extended the current knowledge of ARHGEF2 expression and its role in early central nervous system development, with special reference to the formation of the precerebellar system. In addition to extensive literature on ARHGEF2, we now provide evidence for its significant role in neuronal migration in brain development and link the gene to human neurodevelopmental disease
    corecore