547 research outputs found

    Van der Waals Nanoantennas on Gold as Hosts for Hybrid Mie-Plasmonic Resonances

    Full text link
    Dielectric nanoresonators have been shown to circumvent the heavy optical losses associated with plasmonic devices, however they suffer from less confined resonances. By constructing a hybrid system of both dielectric and metallic materials, one can retain the low losses of dielectric resonances, whilst gaining additional control over the tuning of the modes with the metal, and achieving stronger mode confinement. In particular, multi-layered van der Waals materials are emerging as promising candidates for integration with metals owing to their weak attractive forces, which enable deposition onto such substrates without the requirement of lattice matching. Here we use layered, high refractive index WS2_2 exfoliated on gold, to fabricate and optically characterize a hybrid nanoantenna-on-gold system. We experimentally observe a hybridization of Mie resonances, Fabry-P\'erot modes, and surface plasmon-polaritons launched from the nanoantennas into the substrate. We achieve experimental quality factors of Mie-plasmonic modes of up to 20 times that of Mie resonances in nanoantennas on silica, and observe signatures of a supercavity mode with a Q factor of 263 ±\pm 28, resulting from strong mode coupling between a higher-order anapole and Fabry-P\'erot-plasmonic mode. We further simulate WS2_2 nanoantennas on gold with an hBN spacer, resulting in calculated electric field enhancements exceeding 2600, and a Purcell factor of 713. Our results demonstrate dramatic changes in the optical response of dielectric nanophotonic structures placed on gold, opening new possibilities for nanophotonics and sensing with simple-to-fabricate devices.Comment: 21 + 11 pages, 5 + 7 figure

    Restriction landmark genomic scanning (RLGS) spot identification by second generation virtual RLGS in multiple genomes with multiple enzyme combinations.

    Get PDF
    BackgroundRestriction landmark genomic scanning (RLGS) is one of the most successfully applied methods for the identification of aberrant CpG island hypermethylation in cancer, as well as the identification of tissue specific methylation of CpG islands. However, a limitation to the utility of this method has been the ability to assign specific genomic sequences to RLGS spots, a process commonly referred to as "RLGS spot cloning."ResultsWe report the development of a virtual RLGS method (vRLGS) that allows for RLGS spot identification in any sequenced genome and with any enzyme combination. We report significant improvements in predicting DNA fragment migration patterns by incorporating sequence information into the migration models, and demonstrate a median Euclidian distance between actual and predicted spot migration of 0.18 centimeters for the most complex human RLGS pattern. We report the confirmed identification of 795 human and 530 mouse RLGS spots for the most commonly used enzyme combinations. We also developed a method to filter the virtual spots to reduce the number of extra spots seen on a virtual profile for both the mouse and human genomes. We demonstrate use of this filter to simplify spot cloning and to assist in the identification of spots exhibiting tissue-specific methylation.ConclusionThe new vRLGS system reported here is highly robust for the identification of novel RLGS spots. The migration models developed are not specific to the genome being studied or the enzyme combination being used, making this tool broadly applicable. The identification of hundreds of mouse and human RLGS spot loci confirms the strong bias of RLGS studies to focus on CpG islands and provides a valuable resource to rapidly study their methylation

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Global short-term mortality risk and burden associated with tropical cyclones from 1980 to 2019: a multi-country time-series study

    Full text link
    Summary Background The global spatiotemporal pattern of mortality risk and burden attributable to tropical cyclones is unclear. We aimed to evaluate the global short-term mortality risk and burden associated with tropical cyclones from 1980 to 2019. Methods The wind speed associated with cyclones from 1980 to 2019 was estimated globally through a parametric wind field model at a grid resolution of 0·5° × 0·5°. A total of 341 locations with daily mortality and temperature data from 14 countries that experienced at least one tropical cyclone day (a day with maximum sustained wind speed associated with cyclones ≥17·5 m/s) during the study period were included. A conditional quasi-Poisson regression with distributed lag non-linear model was applied to assess the tropical cyclone-mortality association. A meta-regression model was fitted to evaluate potential contributing factors and estimate grid cell-specific tropical cyclone effects. Findings Tropical cyclone exposure was associated with an overall 6% (95% CI 4-8) increase in mortality in the first 2 weeks following exposure. Globally, an estimate of 97 430 excess deaths (95% empirical CI [eCI] 71 651-126 438) per decade were observed over the 2 weeks following exposure to tropical cyclones, accounting for 20·7 (95% eCI 15·2-26·9) excess deaths per 100 000 residents (excess death rate) and 3·3 (95% eCI 2·4-4·3) excess deaths per 1000 deaths (excess death ratio) over 1980-2019. The mortality burden exhibited substantial temporal and spatial variation. East Asia and south Asia had the highest number of excess deaths during 1980-2019: 28 744 (95% eCI 16 863-42 188) and 27 267 (21 157-34 058) excess deaths per decade, respectively. In contrast, the regions with the highest excess death ratios and rates were southeast Asia and Latin America and the Caribbean. From 1980-99 to 2000-19, marked increases in tropical cyclone-related excess death numbers were observed globally, especially for Latin America and the Caribbean and south Asia. Grid cell-level and country-level results revealed further heterogeneous spatiotemporal patterns such as the high and increasing tropical cyclone-related mortality burden in Caribbean countries or regions. Interpretation Globally, short-term exposure to tropical cyclones was associated with a significant mortality burden, with highly heterogeneous spatiotemporal patterns. In-depth exploration of tropical cyclone epidemiology for those countries and regions estimated to have the highest and increasing tropical cyclone-related mortality burdens is urgently needed to help inform the development of targeted actions against the increasing adverse health impacts of tropical cyclones under a changing climate

    Effect modification of greenness on the association between heat and mortality: A multi-city multi-country study

    Get PDF
    Background: Identifying how greenspace impacts the temperature-mortality relationship in urban environments is crucial, especially given climate change and rapid urbanization. However, the effect modification of greenspace on heat-related mortality has been typically focused on a localized area or single country. This study examined the heat-mortality relationship among different greenspace levels in a global setting. Methods: We collected daily ambient temperature and mortality data for 452 locations in 24 countries and used Enhanced Vegetation Index (EVI) as the greenspace measurement. We used distributed lag non-linear model to estimate the heat-mortality relationship in each city and the estimates were pooled adjusting for city-specific average temperature, city-specific temperature range, city-specific population density, and gross domestic product (GDP). The effect modification of greenspace was evaluated by comparing the heat-related mortality risk for different greenspace groups (low, medium, and high), which were divided into terciles among 452 locations. Findings: Cities with high greenspace value had the lowest heat-mortality relative risk of 1·19 (95% CI: 1·13, 1·25), while the heat-related relative risk was 1·46 (95% CI: 1·31, 1·62) for cities with low greenspace when comparing the 99th temperature and the minimum mortality temperature. A 20% increase of greenspace is associated with a 9·02% (95% CI: 8·88, 9·16) decrease in the heat-related attributable fraction, and if this association is causal (which is not within the scope of this study to assess), such a reduction could save approximately 933 excess deaths per year in 24 countries. Interpretation: Our findings can inform communities on the potential health benefits of greenspaces in the urban environment and mitigation measures regarding the impacts of climate change.Research in context - I-Evidence before this study: Urbanization and climate change have resulted in changes to the urban environment, including the urban heat island effect and contributions to other extreme weather events. Recently, as metropolitan areas have become denser due to rapid urbanization, environmental problems such as high temperatures are also worsening. Many studies showed that high temperatures increase health risks, including mortality. Therefore, identifying factors that could mitigate the high-temperature conditions in urban environments are a crucial part of climate change mitigation strategies. Many studies found that urban green spaces may play an important role in mitigating heat. Specifically, large green spaces have shown a significant and positive cooling effect. Vegetation can promote air convection through shading and evapotranspiration, which indicates that dense vegetation can lower air temperature. Therefore, more greenspace could result in lower temperatures during the warm season, which would lower exposure to high temperatures that impact human health. Importantly, while greenspace can lower exposure to heat, this study examined how greenspace modifies the heat-health relationship. Some studies have investigated this issue. For example, studies found that heat-related mortality and ambulance calls are negatively correlated with the amount of greenspace coverage. However, most previous work on how greenspace modifies the heat-health relationship was based on one country or region. Research is needed on a global scale to understand how greenspace in urban areas among different countries, with different populations, levels of urbanization, and types of greenspace, can modify the relationship between extreme temperatures and health. As climate change is anticipated to increase temperatures and the associated health consequences worldwide, greenspace may be a plausible mitigation strategy for cities in order to address heat-related health impacts at present and in the future. II-Added value of this study: In this study, we explored the effect modification of greenspace on the heat-mortality relationship on a global scale. With a dataset of 452 locations from 24 countries located in various climate zones and continents, this study incorporated variability in greenspace, temperature, and population characteristics. We found that, based on 452 locations, the heat-mortality risks differed with greenspace category and the cities with higher greenspace values had lower heat-mortality risk than those with lower greenspace values. III-Implications of all the available evidence: Our findings provide evidence that higher greenspace reduces the heat-related mortality, which is similar to other previous smaller studies, and our study results were consistent in different countries around various climate zones. These findings indicate that disparate greenspace levels, temperature, and environment settings should be considered when developing policies and strategies in climate change mitigation and public health adaptation. This study adds to the existing literature that greenspace can reduce the urban heat island effect, by providing evidence for the theory that greenspace can also lower the heat-mortality association, and documents such impacts on a global scale.This publication was developed under Assistance Agreement No. RD83587101 awarded by the U.S. Environmental Protection Agency to Yale University. Research reported in this publication was also supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health under Award Number R01MD012769. Also, this work has been supported by the National Research Foundation of Korea (2021R1A6A3A03038675), Medical Research Council-UK (MR/V034162/1 and MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), Academy of Finland (Grant ID: 310372), European Union's Horizon 2020 Project Exhaustion (Grant ID: 820655 and 874990), Czech Science Foundation (22-24920S), Emory University's NIEHS-funded HERCULES Center (Grant ID: P30ES019776), and Grant CEX2018-000794-S funded by MCIN/AEI/ 10.13039/501100011033.info:eu-repo/semantics/publishedVersio

    Synthesis of the land carbon fluxes of the Amazon region between 2010 and 2020

    Get PDF
    The Amazon is the largest continuous tropical forest in the world and plays a key role in the global carbon cycle. Human-induced disturbances and climate change have impacted the Amazon carbon balance. Here we conduct a comprehensive synthesis of existing state-of-the-art estimates of the contemporary land carbon fluxes in the Amazon using a set of bottom-up methods (i.e., dynamic vegetation models and bookkeeping models) and a top-down inversion (atmospheric inversion model) over the Brazilian Amazon and the whole Biogeographical Amazon domain. Over the whole biogeographical Amazon region bottom-up methodologies suggest a small average carbon sink over 2010-2020, in contrast to a small carbon source simulated by top-down inversion (2010-2018). However, these estimates are not significantly different from one another when accounting for their large individual uncertainties, highlighting remaining knowledge gaps, and the urgent need to reduce such uncertainties. Nevertheless, both methodologies agreed that the Brazilian Amazon has been a net carbon source during recent climate extremes and that the south-eastern Amazon was a net land carbon source over the whole study period (2010-2020). Overall, our results point to increasing human-induced disturbances (deforestation and forest degradation by wildfires) and reduction in the old-growth forest sink during drought

    Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 Countries.

    Get PDF
    BACKGROUND Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate

    Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 Countries

    Get PDF
    Background: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. Methods: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. Results: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1–2.3) and 9.1 (95% eCI, 8.9–9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4–2.8) and 12.8 (95% eCI, 12.2–13.1) for every 1000 heart failure deaths, respectively. Conclusions: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day—and especially under a changing climate.Clinical Perspective_ What Is New?: This study provided evidence from what we believe is the largest multinational dataset ever assembled on cardiovascular outcomes and environmental exposures; Extreme hot and cold temperatures were associated with increased risk of death from any cardiovascular cause, ischemic heart disease, stroke, and heart failure; For every 1000 cardiovascular deaths, 2 and 9 excess deaths were attributed to extreme hot and cold days, respectively. _ What Are the Clinical Implications?: Extreme temperatures from a warming planet may become emerging priorities for public health and preventative cardiology; The findings of this study should prompt professional cardiology societies to commission scientific statements on the intersections of extreme temperature exposure and cardiovascular health.This study was supported by the Kuwait Foundation for the Advancement of Science (CB21-63BO-01); the US Environmental Protection Agency (RD-835872); Harvard Chan National Institute of Environmental Health Sciences Center for Environmental Health (P01ES009825); the UK Medical Research Council (MR/R013349/1); the UK Natural Environment Research Council (NE/R009384/1); the European Union’s Horizon 2020 Project Exhaustion (820655); the Australian National Health and Medical Research Council (APP 2000581, APP 1109193, APP 1163693); the National Institute of Environmental Health Sciences–funded HERCULES Center (P30ES019776); the MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S); the Taiwanese Ministry of Science and Technology (MOST 109–2621-M-002–021); the Environmental Restoration and Conservation Agency, Environment Research and Technology Development Fund (JPMEERF15S11412); the São Paulo Research Foundation; and Fundação para a Ciência e a Tecnlogia (SFRH/BPD/115112/2016)info:eu-repo/semantics/publishedVersio
    corecore